In this study, we use a compartmental nonlinear deterministic mathematical model to investigate the effect of different optimal control strategies in controlling Tuberculosis (TB) disease transmission in the community. We employ stability theory of differential equations to investigate the qualitative behavior of the model by obtaining the basic reproduction number and determining the local stability conditions for the disease-free and endemic equilibria. We consider three control strategies representing distancing, case finding, and treatment efforts and numerically compare the levels of exposed and infectious populations with and without control strategies. The results suggest that combination of all controls is the best strategy to eradicate TB disease from the community at an optimal level with minimum cost of interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.