Speech interface to computer is the next big step that the technology needs to take for general users. Automatic speech recognition (ASR) will play an important role in taking technology to the people. There are numerous applications of speech recognition such as direct voice input in aircraft, data entry, speech-to-text processing, voice user interfaces such as voice dialling. ASR system can be divided into two different parts, namely feature extraction and feature recognition. In this paper we present MATLAB based feature recognition using backpropagation neural network for ASR. The objective of this research is to explore how neural networks can be employed to recognize isolated-word speech as an alternative to the traditional methodologies. The general techniques developed here can be further extended to other applications such as sonar target recognition, missile tracking and classification of underwater acoustic signals. Back-propagation neural network algorithm uses input training samples and their respective desired output values to learn to recognize specific patterns, by modifying the activation values of its nodes and weights of the links connecting its nodes. Such a trained network is later used for feature recognition in ASR systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.