Aim:The main aim of the study is to predict metro water fraud accurately by Recurrent Neural Network Algorithms and compare the prediction accuracy with Convolutional Neural Network. Materials and Methods: In the existing system Convolutional Neural Network algorithm is used and in the proposed system Recurrent Neural Network algorithm is used. CNN with sample size =20 and RNN with sample size =20 was iterated forty times for predicting the accuracy. The algorithms have been implemented and tested over a dataset which consists of 8002 records. Result: After performing the experiment we get mean accuracy of 94.5210 by using Recurrent Neural Network algorithm and we get accuracy of 93.4950 by using Convolutional Neural Network algorithm for metro water fraudulent prediction. There is a statistical significant difference in accuracy for two algorithms is p<0.05 by performing independent samples t-tests. Conclusion: The comparison results show that the Recurrent Neural Network algorithm appears to be better performance than Convolutional Neural Network algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.