Workflow scheduling is a challenging field in computing in which tasks are scheduled according to the user requirement and it becomes costly due to the quality of service demand by the user. Cloud environment has been deployed for this work so as to reduce the overall cost. To maintain & utilize resources in the cloud computing scheduling mechanism is needed. Many algorithms and protocols are used to manage the parallel jobs and resources which are used to enhance the performance of the CPU in the cloud environment. Particles swarm Optimization (PSO) and Grey Wolf Optimization (GWO) are used for effective scheduling. This work is based on the optimization of Total execution time and total execution cost. The results of the proposed approach are found to be effective in compare to existing methods. The particle swarm optimization is initialized by using Pareto distribution. TET and TEC illustrated the minimized cost and time by using the GWO to converge the decision of virtual machine. Thus the work concludes that GWO performs better in compare to existing BAT algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.