Environmental and economical concerns over diminishing landfill space and the growing abundance of mixed plastic waste mandate development of viable strategies for recovering highvalued resources from waste polymers. Co-processing of waste polymer mixtures with coal allows for the simultaneous conversion of coal and plastics into high-valued fuels. However, there is limited information about the underlying reaction pathways, kinetics, and mechanisms controlling coal liquefaction in the presence of polymeric materials.A series of model compound experiments has been conducted, providing a starting point for unraveling the complex, underlying chemistry. Neat pyrolysis studies of model compounds of polyethylene and coal were conducted in batch reactors. Tetradecane (C 14 H 30 ) was used as a polyethylene mimic, and 4-(naphthylmethyl)bibenzyl (NBBM) was used as a coal model compound. Reaction temperatures were 420 and 500˚C, and batch reaction times ranged from 5-150 minutes. Detailed product analysis using gas chromatography and mass spectrometry enabled the reactant conversion and product selectivities to be determined. Reaction of single components and binary mixtures allowed the kinetic coupling between feedstocks to be examined.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.