Diabetes mellitus has been a very complex and chronic lifelong disease. Hence, it has been identified as a clinically highly significant disease which further attracted the healthcare industry to define most relevant clinical directories and also to apply efficient automated prediagnoses and further care. Rule-based classifier technique has proven its strength in diabetes diagnosis when used the computational methods. There has been a considerable development in the classifier's performance, to classify the disease, in the past decades by which they were highly recommended. In this paper, a classifier is proposed based on minimum rules which further uses Principal Component Analysis (PCA). To apply these techniques Pima Indians diabetes dataset is used from the UCI Machine LearningRepository. Set of experiments were conducted on the data set with PCA to evaluate the performance among the decision tree, Naïve Bayes, and Support Vector Machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.