The software defect prediction and assessment plays a significant role in the software development process. Predicting software defects in the earlier stages will increases the software quality, reliability and efficiency, the cost of detecting and eliminating software defects have been the most expensive task during both development and maintenance process, as software demands increase and delivery of the software span decreased, ensuring software quality becomes a challenge. However, due to inadequate testing, no software can pretend to be free from errors. Bug repositories are used for storing and managing bugs in software projects. A bug in the repositories is recorded as a bug report. When a bug is found by a tester its available information is entered in defect tracking systems. During its resolution process a bug enters into various bug states. These defect tracking systems enable user to give the information about the bugs while running the software. However, the severity prediction has recently gained a lot of attention in software maintenance. Bugs with greater severity should be resolved before bugs with lower severity. In this paper an evolutionary interactive scheme to evaluate bug reports and assess the severity is proposed. This paper presents a Software Bug Complexity Cluster (SBCC) using Self Organizing Maps. In this SBCC a feature matrix is built using bug durations and the complexities of software bugs are categorized into distinct clusters including Blocker, Critical, Major, Trivial and Minor by specifying negative impact of the defect using two different techniques, namely k-means and SOM. Bug duration, proximity error and pre-defined distance functions are used to estimate the accuracy of different bug complexities. Our systematic study found that SOM's proximity error and fitness have greater performance and efficiency than K-Means. The collected results showed better performance for the SBCC with respect to fitness and cluster proximity error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.