An investigation of the electrical characteristics of banana leaf reinforced Polymer composites made by resin transfer molding (RTM) has been carried out, with special emphasis on the effects of fibre loading, frequency and temperature. Every parameter, including the dielectric constant (ɛ0), dissipation factor (tan δ), loss factor (ɛ00), and conductivity, increases with increasing fibre concentration over the whole frequency range. A minimum fibre content of 50 % is required for composites to achieve excellent performance values. This increase is large at low frequencies, minimal at middle frequencies, and negligible at extremely high frequencies, according to the results of the study. At low frequencies, the volume resistivity fluctuates in response to fibre loading, while at high frequencies, the resistivity blends together. When the temperature rises, the dielectric constant values rise as well, however once the glass transition temperature is reached, the dielectric constant values fall. This fluctuates depending on the amount of fibre present. Finally, an attempt is made to establish a relationship between the experimental value of the dielectric constant and theoretical expectations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.