This Paper is an attempt to develop the expansion-planning algorithm using meta heuristics algorithms. Expansion Planning is always needed as the power demand is increasing every now and then. Thus for a better expansion planning the meta heuristic methods are needed. The cost efficient Expansion planning is desired in the proposed work. Recently distributed generation is widely researched to implement in future energy needs as it is pollution free and capability of installing it in rural places. In this paper, optimal distributed generation expansion planning with Particle Swarm Optimization (PSO) and Cuckoo Search Algorithm (CSA) for identifying the location, size and type of distributed generator for future demand is predicted with lowest cost as the constraints. Here the objective function is to minimize the total cost including installation and operating cost of the renewable DGs. MATLAB based `simulation using M-file program is used for the implementation and Indian distribution system is used for testing the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.