Proper regulation of protein levels is essential for health, and abnormal levels of proteins are hallmarks of many diseases. A number of studies have recently shown that messenger RNA levels vary among individuals of a species and that genetic linkage analysis can be used to identify quantitative trait loci that influence these levels. By contrast, little is known about the genetic basis of variation in protein levels in genetically diverse populations, in large part because techniques for large-scale measurements of protein abundance lag far behind those for measuring transcript abundance. Here we describe a label-free, mass spectrometry-based approach to measuring protein levels in total unfractionated cellular proteins, and we apply this approach to elucidate the genetic basis of variation in protein abundance in a cross between two diverse strains of yeast. Loci that influenced protein abundance differed from those that influenced transcript levels, emphasizing the importance of direct analysis of the proteome.
We have developed a systematic analytical approach, termed PRISM (Proteomic Investigation Strategy for Mammals), that permits routine, large scale protein expression profiling of mammalian cells and tissues. PRISM combines subcellular fractionation, multidimensional liquid chromatography-tandem mass spectrometry-based protein shotgun sequencing, and two newly developed computer algorithms, STATQUEST and GOClust, as a means to rapidly identify, annotate, and categorize thousands of expressed mammalian proteins. The application of PRISM to adult mouse lung and liver resulted in the high confidence identification of over 2,100 unique proteins including more than 100 integral membrane proteins, 400 nuclear proteins, and 500 uncharacterized proteins, the largest proteome study carried out to date on this important model organism. Automated clustering of the identified proteins into Gene Ontology annotation groups allowed for streamlined analysis of the large data set, revealing interesting and physiologically relevant patterns of tissue and organelle specificity. PRISM therefore offers an effective platform for in-depth investigation of complex mammalian proteomes.Molecular & Cellular Proteomics 2:96 -106, 2003.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.