A graph whose spectrum consists entirely of integers is called an integral graph. We present a survey of results on integral graphs and on the corresponding proof techniques.
Abstract. Distance energy is a newly introduced molecular graph-based analog of the total π-electron energy, and it is defined as the sum of the absolute eigenvalues of the molecular distance matrix. For trees and unicyclic graphs, distance energy is equal to the doubled value of the distance spectral radius. In this paper, we introduce a general transformation that increases the distance spectral radius and provide an alternative proof that the path Pn has the maximal distance spectral radius among trees on n vertices. Among the trees with a fixed maximum degree ∆, we prove that the broom B n,∆ (consisting of a star S ∆+1 and a path of length n − ∆ − 1 attached to an arbitrary pendent vertex of the star) is the unique tree that maximizes the distance spectral radius, and conjecture the structure of a tree which minimizes the distance spectral radius. As a first step towards this conjecture, we characterize the starlike trees with the minimum distance spectral radius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.