Impatiens walleriana is a valued ornamental plant sensitive to drought stress. We investigated whether the foliar application of 2mM salicylic acid (SA) can protect potted I. walleriana plants from drought stress. The plants were divided into: watered plants, drought-stressed plants, watered plants treated with SA and drought-stressed plants treated with SA. The number of flowers and flower buds, relative water content (RWC), contents of malondialdehyde (MDA) and proline (Pro) and the activities of superoxide dismutases, catalases and peroxidases were recorded at different time points. Three dehydrin sequences were identified in de novo assembled leaf transcriptome: IwDhn1, IwDhn2.1 and IwDhn2.2. Drought stress caused wilting, floral abortion, reduction of RWC and increased MDA—an indicator of lipid peroxidation. In response to drought, Impatiens accumulated Pro and induced chloroplastic Cu/ZnSOD and two peroxidase isoforms. The most remarkable drought response was strong induction of IwDhn2.1 and IwDhn2.2. Rehydration restored RWC, Pro level, Cu/ZnSOD activity and dehydrins expression in drought-stressed plants approximately to the values of watered plants.SA had ameliorating effects on plants exposed to drought, including prevention of wilting, preservation of RWC, increased Pro accumulation, modulation of antioxidative activities and remarkable decrease of lipid peroxidation, but without effects on flowers’ preservation.
Hairy root cultures of lettuce (Lactuca sativa L.) were obtained by inoculation of cotyledonary leaves of in vitro lettuce seedlings (cvs. Nansen and Ljubljanska ledenka) with Agrobacterium rhizogenes A4M70GUS. Approximately in 96.7% cvs. Nansen and in 91.2% Ljubljanska ledenka inoculated explants produced hairy root when they were incubated on Murashige and Skoog (MS) half-strength medium without plant growth regulators. A total of 54% of all hairy root cultures expressed GUS activity. Every hairy root represented an independent transformation event. Line Ljubljanska ledenka 18 showed the highest biomass (5.5 times the biomass of control root). A PCR analysis of the genomic DNA confirmed the presence of marker and target genes in 15 hairy roots examined.
The aim of this study was to develop a fast, reliable and true-to-type protocol for in vitro plant regeneration and long-term storage of horned pansy (Viola cornuta L). Seed germination over 60% was recorded after 12 weeks of growth at 10 °C or 4 °C. Calli formation and shoot induction were obtained in petiole and hypocotyl culture on half-strength MS mineral salts with full concentration of Na-FeEDTA and vitamins (½MS medium) with 2,4-dichlorophenoxyacetic acid (2,4-D, 0.1 mg/L) and 6-benzylaminopurine (BAP, 2.0 mg/L) and leaf culture on ½MS medium with thidiazuron (TDZ,1.0 mg/L). The highest frequency of adventitious shoot induction (50%) with six shoots/explant was achieved in hypocotyl culture from top hypocotyl segments, close to epicotyl which was grown 8 weeks at 16 h light/8 h dark photoperiod. Subsequent shoot multiplication was achieved on ½MS medium with α-naphthaleneacetic acid (NAA, 0.1 or 0.5 mg/L) and BAP (1.0 mg/L). Rooting of shoots was obtained on ½MS medium with low concentration (0.1 mg/L) of auxins: indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or NAA, or without growth regulators. In vitro-derived plantlets were acclimatized under greenhouse conditions. All plants developed normally, bloomed and set seeds. Shoot tips were cryopreserved succssefully using modified plant vitrification 3 (PVS3-based vitrification procedure). Cold acclimation for 2 weeks significantly improved shoot regrowth (64%) after thawing in comparison to non-acclimated shoots (39%). Clonal fidelity of regenerated plantlets at ploidy level was confirmed by chromosome counting. The presented protocol can be useful for mass propagation, genetic transformation studies and long-term storage of valuable Viola spp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.