The classical Osborne wheat protein fractions (albumins, globulins, gliadins, and glutenins), as well as several proteins from each of the four subunits of gliadin using SDS-PAGE analyses, were determined in the grain of five bread (T. aestivum L.) and five durum wheat (T. durum Desf.) genotypes. In addition, content of tryptophan and wet gluten were analyzed. Gliadins and glutenins comprise from 58.17% to 65.27% and 56.25% to 64.48% of total proteins and as such account for both quantity and quality of the bread and durum wheat grain proteins, respectively. The ratio of gliadin/total glutenin varied from 0.49 to 1.01 and 0.57 to 1.06 among the bread and durum genotypes, respectively. According to SDS-PAGE analysis, bread wheat genotypes had a higher concentration of α + β + γ-subunits of gliadin (on average 61.54% of extractable proteins) than durum wheat (on average 55.32% of extractable proteins). However, low concentration of ω-subunit was found in both bread (0.50% to 2.53% of extractable proteins) and durum (3.65% to 6.99% of extractable proteins) wheat genotypes. On average, durum wheat contained significantly higher amounts of tryptophan and wet gluten (0.163% dry weight (d.w.) and 26.96% d.w., respectively) than bread wheat (0.147% d.w. and 24.18% d.w., respectively).
Improved nutritive and technological maize grain value is very important for its use in diets. In this work, the chemical composition and potential beneficial components, including total and soluble proteins, tryptophan, starch, sugars (sucrose and reducing sugars), and fibres were investigated in flour of eight specialty maize hybrids from Maize Research Institute Zemun Polje (ZP): two sweet, popping, red, white, waxy, yellow semiflint and yellow dent maize hybrids. In addition, digestibility of grain dry matter and viscosity of maize flour were determined. The highest nutritive value was recorded in sweet maize hybrids ZP 504su and ZP 531su which had the highest content of total protein, albumin, tryptophan, sugars and dietary fibres. Besides, low content of starch (55.32% and 54.59%, respectively) and lignin (0.39% and 0.45%) affected the highest dry matter digestibility (92.69% and 91.07%) of sweet maize flour. However, functional properties of ZP sweet hybrids were not satisfactory for food and industrial applications. In contrast, flour of ZP waxy maize hybrid was characterised by a clear and a high peak viscosity. All hybrids could be classified according to the sucrose content in three groups: a) > 4% (sweet and red hybrids-ZP 504su, ZP Rumenka), b) from 3 to 4% (waxy, standard dent and semi flint hybrids-ZP 704wx, ZP 434, ZP 633) and c) from 2 to 3% (sweet, white and popping maize hybrids-ZP 531su, ZP 74b, ZP 611k).α-Zein was the dominant protein fraction in all genotypes except the sweet maize hybrids, making 22.45% to 29.25% of the total protein content.
Grain yield is the primary trait of interest in maize breeding programs. Worldwide, drought is the most pervasive limitation to the achievement of yield potential in maize. Drought tolerance of maize has been considerably improved through conventional breeding. Traditional breeding methods have numerous limitations, so development of new molecular genetics techniques could help in elucidation of genetic basis of drought tolerance .In order to map QTLs underlying yield and yield components under drought 116 F3 families of DTP79xB73 cross were evaluated in the field trials. Phenotypic correlations calculated using Pearson’s coefficients were high and significant. QTL detection was performed using composite interval mapping option in WinQTL Cartographer v 2.5. Over all nine traits 45 QTLs were detected: five for grain yield per plant and 40 for eight yield components. These QTLs were distributed on all chromosomes except on chromosome 9. Percent of phenotypic variability determined for the identified QTLs for all the traits was in the range from 27.46 to 95.85%. Different types of gene action were found for the QTLs identified for analyzed traits. [Projekat Ministarstva nauke Republike Srbije, br. TR31068
A total of 13 maize populations from the drought-tolerant mini core collection from Maize Research Institute gene bank were evaluated for oil, protein, and tryptophan contents, fatty acid (FA) composition, and kernel characteristics. All accessions are high oil (5.8-7.9%) and protein (10.58-12.45%) genotypes. Most of the accessions showed high contents of tryptophan (0.070-0.081%) and saturated (12.65-17.91%) and monounsaturated (24.19-45.52%) FAs. Significant positive correlations were found between oil and protein and between oil and tryptophan contents (p < 0.01). Correlations between oil and principal FA were non-significant. Several accessions showed multiple nutritional advantages. For example, IP6428 had high oil (7.3%), tryptophan (0.081%), and saturated FA (17.9%) contents. Moreover, a positive correlation (p < 0.01) between palmitic (13.68%) and oleic (34.74%) acids enables the use of IP6428 for developing lines high in these FAs. Because drought-tolerant accessions were selected in both subtropical and temperate zones, they could be used for breeding value-added maize adapted to both environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.