Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4–5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the “core-in-modules” decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems.
There is great interest in elucidating the cluster structure of brain networks in terms of modules, blocks or clusters of similar nodes. However, it is currently challenging to handle data on multiple subjects since most of the existing methods are applicable only on a subject-by-subject basis or for analysis of a group average network. The main limitation of per-subject models is that there is no obvious way to combine the results for group comparisons, and of groupaveraged models that they do not reflect the variability between subjects. Here, we propose two novel extensions of the classical Stochastic Blockmodel (SBM) that use a mixture model to estimate blocks or clusters of connected nodes, combined with a regression model to capture the effects on cluster structure of individual differences on subject-level covariates. Multi-subject Stochastic Blockmodels (MS-SBM) can flexibly account for between-subject variability in terms of a homogenous or heterogeneous effect on connectivity of covariates such as age or diagnostic status. Using synthetic data, representing a range of block sizes and cluster structures, we investigate the accuracy of the estimated MS-SBM parameters as well as the validity of inference procedures based on Wald, likelihood ratio and Monte Carlo permutation tests. We show that multi-subject SBMs recover the true cluster structure of synthetic networks more accurately and adaptively than standard methods for modular decomposition. Permutation tests of MS-SBM parameters were more robustly valid for statistical inference and Type I error control than tests based on standard asymptotic assumptions. Applied to analysis of multi-subject resting state fMRI networks (13 healthy volunteers; 12 people with schizophrenia; N = 268 brain regions), we show that the Heterogeneous Stochastic Blockmodel estimates 'core-on-modules' architecture. The intra-block and inter-block connection weights vary between individual participants and can be modelled as a logistic function of subject-level covariates like age or diagnostic status. Multi-subject Stochastic Blockmodels are likely to be useful tools for statistical analysis of individual differences in human brain graphs and other networks whose prior cluster structure needs to be estimated from the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.