OBJECTIVE To evaluate the longitudinal reproducibility and variations of cartilage T1ρ and T2 measurements using different coils, MR systems and sites. METHODS Single-Site study: Phantom data were collected monthly for up to 29 months on four GE 3T MR systems. Data from phantoms and human subjects were collected on two MR systems using the same model of coil; and were collected on one MR system using two models of coils. Multi-site study: Three participating sites used the same model of MR systems and coils, and identical imaging protocols. Phantom data were collected monthly. Human subjects were scanned and rescanned on the same day at each site. Two traveling human subjects were scanned at all three sites. RESULTS Single-Site Study: The phantom longitudinal RMS-CVs ranged from 1.8% to 2.7% for T1ρ and 1.8% to 2.8% for T2. Significant differences were found in T1ρ and T2 values using different MR systems and coils. Multi-Site Study: The phantom longitudinal RMS-CVs ranged from 1.3% to 2.6% for T1ρ and 1.2% to 2.7% for T2. Across three sites (n=16), the in-vivo scan-rescan RMS-CV was 3.1% and 4.0% for T1ρ and T2, respectively. Phantom T1ρ and T2 values were significantly different between three sites but highly correlated (R>0.99). No significant difference was found in T1ρ and T2 values of traveling controls, with cross-site RMS-CV as 4.9% and 4.4% for T1ρ and T2, respectively. CONCLUSION With careful quality control and cross-calibration, quantitative MRI can be readily applied in multi-site studies and clinical trials for evaluating cartilage degeneration.
Purpose:Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI) is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA).Procedures:In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF) PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki) and the normalized uptake (standardized uptake value) of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage.Results:Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions.Conclusion:This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and biochemical interactions in the whole knee joint in OA, which potentially could help assess therapeutic targets in treating OA.
L-carnitine transports fatty acids into the mitochondria for oxidation and also buffers excess acetyl-CoA away from the mitochondria. Thus, L-carnitine may play a key role in maintaining liver function, by its effect on lipid metabolism. The importance of L-carnitine in liver health is supported by the observation that patients with primary carnitine deficiency (PCD) can present with fatty liver disease, which could be due to low levels of intrahepatic and serum levels of L-carnitine. Furthermore, studies suggest that supplementation with L-carnitine may reduce liver fat and the liver enzymes alanine aminotransferase (ALT) and aspartate transaminase (AST) in patients with Non-Alcoholic Fatty Liver Disease (NAFLD). L-carnitine has also been shown to improve insulin sensitivity and elevate pyruvate dehydrogenase (PDH) flux. Studies that show reduced intrahepatic fat and reduced liver enzymes after L-carnitine supplementation suggest that L-carnitine might be a promising supplement to improve or delay the progression of NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.