Aim of study: This study aims to provide basic information about physiological characteristics of isolates of Lactarius deliciosus (L.) Gray, Russula sanguinaria (Schumach.) Rauschert, Suillus collinitus (Fr) Kuntze, Suillus granulatus (L.) Rousell, Tricholoma batchii Gulden and Tricholoma imbricatum (Fr.) Kumm.Area of study: The isolates are obtained from Pinus heldreichii H. Christ forest in the south-eastern part of Montenegro. Material and methods:The isolates were molecularly characterised by internal transcribed spacer (ITS) sequencing and restriction fragment length polymorphism (RFLP) analysis. The effects of different temperatures (20, 22, 25°C), pHs (4, 4.5, 5.2, 5.8, 6.5, 7.5), and carbon (glucose, sucrose, dextrin, arabinose, xylose and starch) and nitrogen (NH 4 + , NO 3 -and protein) sources on their growth were examined under laboratory conditions.Main results: The studied factors established significant differences in the development of isolates. Isolates of R. sanguinaria, L. deliciosus and both Suillus, were characterised by faster growth at 22°C, while Tricholoma isolates grew faster at 25°C. S. granulatus, S. collinitus and T. imbticatum isolates grew well at lower pH values (4 -5.2), while L. deliciosus, R. sanguinaria and T. bachii exhibited faster growth at pHs between 5.8 and 6.5. The examined isolates were able to utilize various carbohydrates as carbon sources. The biggest mycelial growth was characterised for sucrose, then glucose, dextrin, arabinose, starch and xylose. They grew on all examined nitrogen sources, while the biggest mycelia growth was achieved on ammonium, followed by nitrate and protein. Those characteristics varied amongst the species.Research highlights: Information about physiological characteristics of Tricholoma, Lactarius, Russula, as well as Suillus, are sparse. Hence, the data obtained in this study could contribute to the understanding of their function in ecosystems.Keywords: Lactarius; Montenegro; physiology; RFLP analysis; Russula; Suillus; Tricholoma. Citation: Lazarević, J., Stojičić, D., Keča, N. (2016). Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrrhizal isolates from Pinus heldreichii forest. Forest Systems, Volume 25, Issue 1, e048. http://dx.doi.
In vitro conditions and benzyladenine influenced both content and composition of micropropagated Micromeria pulegium essential oils, with pulegone and menthone being the main essential oil components. The content and chemical composition of Micromeria pulegium (Rochel) Benth. essential oils were studied in native plant material at vegetative stage and in micropropagated plants, obtained from nodal segments cultured on solid MS medium supplemented with N(6)-benzyladenine (BA) or kinetin at different concentrations, alone or in combination with indole-3-acetic acid. Shoot proliferation was achieved in all treatments, but the highest biomass production was obtained after treatment with 10 μM BA. Phytochemical analysis identified up to 21 compounds in the essential oils of wild-growing and in vitro cultivated plants, both showing very high percentages of total monoterpenoids dominated by oxygenated monoterpenes of the menthane type. Pulegone and menthone were the main essential oil components detected in both wild-growing plants (60.07 and 26.85 %, respectively) and micropropagated plants grown on either plant growth regulator-free medium (44.57 and 29.14 %, respectively) or BA-supplemented medium (50.77 and 14.45 %, respectively). The percentage of total sesquiterpenoids increased in vitro, particularly owing to sesquiterpene hydrocarbons that were not found in wild-growing plants. Differences in both content and the composition of the essential oils obtained from different samples indicated that in vitro culture conditions and plant growth regulators significantly influence the essential oils properties. In addition, the morphology and structure of M. pulegium glandular trichomes in relation to the secretory process were characterized for the first time using SEM and light microscopy, and their secretion was histochemically analyzed.
In Pinus peuce zygotic embryo culture grown on Gresshoff and Doy (1972; GD) basal medium, 2.22 µM benzyladenine (BA) was superior in promoting adventitious bud induction during 4 weeks comparing to kinetin or BA + kinetin. Shoot elongation was achieved on half-strength GD medium devoid of plant growth regulators and containing activated charcoal. Pulse treatment with 1 mM indole-3-butyric acid (IBA) for 2 h, followed by transfer to half-strength GD medium, produced the most efficient rooting. Rooted shoots were transplanted to the greenhouse and plantlets continued to grow and developed into phenotypically normal plants. Up to 10 plants per explant can be obtained within 36 weeks from culture initiation.
The anatomy and ultrastructure of the short glandular trichomes occurring on young expanding leaves of Nicotiana tabacum were investigated using light and transmission electron microscopy. The objective of the present research was to characterize the cellular changes that occur during morphogenesis of short glandular trichomes, from initiation to senescence. Ultrastructural analysis of their secretory cells revealed characteristics common to gland cells: numerous mitochondria in highly organized cytoplasm, large nuclei, and an elaborate network of endoplasmic reticulum. Initial changes in nuclear and plastidial organization were observed at a more advanced secretory stage, marking the onset of senescence. During trichome senescence, gradual reduction of the cytoplasm density occurred along with structural changes of the plastids and the tonoplast. As a result of inward blebbing of the cytoplasm into the vacuole, membrane bound vesicular structures appeared in the vacuolar space. At the late secretory stage, marked by an increase in vacuolation and extraplasmic space, degenerative changes included further fragmentation of the cytoplasm and deterioration of the tonoplast. Multimembrane myelin bodies observed in the vacuolar space were indicative of membrane digestion although plasma membrane did not appear massively degraded.
Glandular trichomes found on the surface of many higher plants contain specialized cells that produce and secrete copious amounts of particular secretory products. Leaf glandular trichomes of the non-model plant species Nicotiana
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.