Small lattices of N nearest-neighbor coupled excitable FitzHugh-Nagumo systems, with time-delayed coupling are studied and compared with systems of FitzHugh-Nagumo oscillators with the same delayed coupling. Bifurcations of equilibria in an N=2 case are studied analytically, and it is then numerically confirmed that the same bifurcations are relevant for the dynamics in the case N>2. Bifurcations found include inverse and direct Hopf and fold limit cycle bifurcations. Typical dynamics for different small time lags and coupling intensities could be excitable with a single globally stable equilibrium, asymptotic oscillatory with symmetric limit cycle, bistable with stable equilibrium and a symmetric limit cycle, and again coherent oscillatory but nonsymmetric and phase shifted. For an intermediate range of time lags, inverse sub-critical Hopf and fold limit cycle bifurcations lead to the phenomenon of oscillator death. The phenomenon does not occur in the case of FitzHugh-Nagumo oscillators with the same type of coupling.
In October 2017, most European countries reported unique atmospheric detections of aerosol-bound radioruthenium (106Ru). The range of concentrations varied from some tenths of µBq·m−3 to more than 150 mBq·m−3. The widespread detection at such considerable (yet innocuous) levels suggested a considerable release. To compare activity reports of airborne 106Ru with different sampling periods, concentrations were reconstructed based on the most probable plume presence duration at each location. Based on airborne concentration spreading and chemical considerations, it is possible to assume that the release occurred in the Southern Urals region (Russian Federation). The 106Ru age was estimated to be about 2 years. It exhibited highly soluble and less soluble fractions in aqueous media, high radiopurity (lack of concomitant radionuclides), and volatility between 700 and 1,000 °C, thus suggesting a release at an advanced stage in the reprocessing of nuclear fuel. The amount and isotopic characteristics of the radioruthenium release may indicate a context with the production of a large 144Ce source for a neutrino experiment.
The collected data should provide a base for the health risk assessments on animals and humans in the near future. It should be emphasized that the sampling was carried out 5 years after the military action and that the number of samples was limited; therefore, the conclusions should be accepted only as observed tendencies and a detailed study should be recommended in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.