Extracted pine (Pinus spp.) wood and the holocellulose and cellulose fractions of pine were analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The main sources of variation among wood constituents were elucidated by principal component analysis (PCA). Peaks characteristic of lignin or polysaccharides were identified through the combination of high mass resolution analyses of pine fractions and high lateral resolution image analyses distinguishing the lignin-rich middle lamella from the secondary cell wall layers in solid wood cross-sections. A collection of peaks was compiled which (1) extends the library of characteristic lignin and polysaccharide secondary ions in wood, (2) can be applied to both high and nominal mass resolution spectra, and (3) is free from peaks that contraindicate between wood components. The removal of additional peaks to avoid mass interferences with common contaminants was also successful. Many of the characteristic peaks were high-intensity fingerprint ions below m/z 100, which provided for rapid analysis of the lignin and polysaccharide biopolymers in woody samples. The analysis also identified important mass interferences with previously reported wood ions.
The softwood degrading white-rot fungus, Phanerochaete carnosa, was investigated for its ability to degrade two coniferous woods: balsam fir and lodgepole pine. P. carnosa grew similarly on these wood species, and like the hardwood-degrading white-rot fungus Ceriporiopsis subvermispora, P. carnosa demonstrated selective degradation of lignin, as observed by Fourier transform infrared spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lignin degradation across cell walls of decayed pine samples was also evaluated by ToF-SIMS and was shown to be uniform. This study illustrates softwood lignin utilization by a white-rot fungus and reveals the industrial potential of the lignocellulolytic activity elicited by this fungus.
Abstract:We report the preparation of lignin-based rigid polyurethane (RPU) foams from surface functionalized kraft lignin via a simple and environmentally benign process. Lignin was functionalized with polyisocyanate at 80 • C for 1 h, the resulting lignin-polyisocyanate prepolymer was confirmed by increased viscosity and Fourier-transform infrared spectroscopy (FTIR). The RPU foams containing up to 30% surface functionalized lignin as a substitute for petroleum-based polyols exhibited comparable thermal and mechanical properties to conventional RPU foams. The lignin-based RPU foams prepared from surface functionalization outperformed RPU foams without the surface functionalization, showing up to 47% and 45% higher specific compressive strength and modulus, respectively, with a 40% lignin substitution ratio. Thermal insulation and temperature-stability of the two types of the foams were comparable. The results indicate that the surface functionalization of lignin increases reactivity and homogeneity of the lignin as a building block in RPU foams. The life cycle assessment for the lignin-based RPU foams shows that the surface functionalization process would have overall lesser environmental impacts when compared with the traditional manufacturing of RPU foams with synthetic polyols. These findings suggest the potential use of surface functionalized lignin as a sustainable core material replacement for synthetic polyols in building materials.
Summary Lignin is a complex phenolic biopolymer found mainly in the secondary cell walls of vascular plants, where it contributes to mechanical strength, water conduction, and plant defence. We studied the lignin of eastern leatherwood (Dirca palustris) because this slow‐growing woody shrub is known for its flexible stems. Various analytical techniques and microscopy methods were employed to examine the composition and distribution of lignin and structural polysaccharides in leatherwood xylem in comparison with trembling aspen (Populus tremuloides) and white spruce (Picea glauca). We found that leatherwood has low overall levels of lignin, a high syringyl lignin content, and a unique distribution of lignin. Most remarkably, the cell corners and middle lamellae remain unlignified in mature xylem. These findings help explain the flexibility of leatherwood and also call into question the classical model of lignification, which purports that lignin polymerization begins in the cell corners and middle lamellae. This atypical lignification regime vividly illustrates the diversity in plant secondary cell wall formation that abounds in nature and casts leatherwood as a new model for the study of lignin biogenesis.
Physical, anatomical, chemical, and microbiological properties of wetwood in heartwood were compared with those of sapwood and normal heartwood in balsam fir (Abies balsamea (L.) Mill.). Wetwood found only in heartwood of balsam fir had significantly higher moisture content (MC) than normal heartwood but not significantly higher MC than sapwood. No differences in relative density or shrinkage properties were found among tissue types. Wetwood tissue needed longer times to dry to an equilibrium MC of 15%, not only because of its high initial MC, but also because of its lower moisture permeability (diffusion coefficient) in this particular MC range (from initial MC to 15% equilibrium MC). However, there were no significant differences in drying rates for the different tissues when drying from 15% MC to 8% MC. Anatomically, wetwood is similar to normal heartwood, and it has no distinctive characteristics except a greater frequency of bacteria. Energy dispersive X-ray analysis showed that all of the tissues contained the same inorganic elements. Both high-performance liquid chromatography and ash analysis showed that wetwood is chemically closer to normal heartwood than to sapwood. Wetwood was significantly more acidic than either normal heartwood or sapwood. A large number of bacterial genera were found in all three tissues, but there were no consistent or significant differences in bacterial presence or activity among tissue types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.