In this paper, two different architectures of Artificial Neural Networks (ANN) are proposed as an efficient tool for predicting and estimating software effort. Artificial Neural Networks, as a branch of machine learning, are used in estimation because they tend towards fast learning and giving better and more accurate results. The search/optimization embraced here is motivated by the Taguchi method based on Orthogonal Arrays (an extraordinary set of Latin Squares), which demonstrated to be an effective apparatus in a robust design. This paper aims to minimize the magnitude relative error (MRE) in effort estimation by using Taguchi's Orthogonal Arrays, as well as to find the simplest possible architecture of an artificial Neural Network for optimized learning. A descending gradient (GA) criterion has also been introduced to know when to stop performing iterations. Given the importance of estimating software projects, our work aims to cover as many different values of actual efficiency of a wide range of projects as possible by division into clusters and a certain coding method, in addition to the mentioned tools. In this way, the risk of error estimation can be reduced, to increase the rate of completed software projects.
Software estimation involves meeting a huge number of different requirements, such as resource allocation, cost estimation, effort estimation, time estimation, and the changing demands of software product customers. Numerous estimation models try to solve these problems. In our experiment, a clustering method of input values to mitigate the heterogeneous nature of selected projects was used. Additionally, homogeneity of the data was achieved with the fuzzification method, and we proposed two different activation functions inside a hidden layer, during the construction of artificial neural networks (ANNs). In this research, we present an experiment that uses two different architectures of ANNs, based on Taguchi’s orthogonal vector plans, to satisfy the set conditions, with additional methods and criteria for validation of the proposed model, in this approach. The aim of this paper is the comparative analysis of the obtained results of mean magnitude relative error (MMRE) values. At the same time, our goal is also to find a relatively simple architecture that minimizes the error value while covering a wide range of different software projects. For this purpose, six different datasets are divided into four chosen clusters. The obtained results show that the estimation of diverse projects by dividing them into clusters can contribute to an efficient, reliable, and accurate software product assessment. The contribution of this paper is in the discovered solution that enables the execution of a small number of iterations, which reduces the execution time and achieves the minimum error.
Rapid and accurate assessment of software project development using artificial intelligence tools can be essential for success in the software industry. This article has two objectives: to reduce the magnitude relative error (MRE) value in estimating the effort and cost of software development using the proposed artificial neural network architecture based on the Taguchi method and examine the influence of input variables on the change in relative error value. Clustering and fuzzification methods further mitigate the heterogeneous structure of the different project values of the datasets used.Taguchi method contributes to the reduction of the number of iterations by 99%, which achieves a significant reduction in estimation and value of MRE. By monitoring additional criteria, such as prediction, correlation, and comparing two activation functions, such as sigmoid and radial basis function, the proposed model's correctness, reliability, and stability are confirmed. Significantly better results are expected using the sigmoid activation function and a decrease in the value of the mean (MRE).
Hyperinsulinemia is a condition characterized by excessively high levels of insulin in the bloodstream. It can exist for many years without any symptomatology. The research presented in this paper was conducted from 2019 to 2022 in cooperation with a health center in Serbia as a large cross-sectional observational study of adolescents of both genders using datasets collected from the field. Previously used analytical approaches of integrated and relevant clinical, hematological, biochemical, and other variables could not identify potential risk factors for developing hyperinsulinemia. This paper aims to present several different models using machine learning (ML) algorithms such as naive Bayes, decision tree, and random forest and compare them with a new methodology constructed based on artificial neural networks using Taguchi’s orthogonal vector plans (ANN-L), a special extraction of Latin squares. Furthermore, the experimental part of this study showed that ANN-L models achieved an accuracy of 99.5% with less than seven iterations performed. Furthermore, the study provides valuable insights into the share of each risk factor contributing to the occurrence of hyperinsulinemia in adolescents, which is crucial for more precise and straightforward medical diagnoses. Preventing the risk of hyperinsulinemia in this age group is crucial for the well-being of the adolescents and society as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.