Reactions of internal alkynes with R3M-H (M = Si, Ge, Sn) follow an unconventional trans-addition mode in the presence of [Cp*Ru(MeCN)3]PF6 (1) as the catalyst; however, the regioselectivity is often poor with unsymmetrical substrates. This problem can be solved upon switching to a catalyst comprising a [Ru-Cl] bond, provided that the acetylene derivative carries a protic functional group. The R3M unit is then delivered with high selectivity to the alkyne-C atom proximal to this steering substituent. This directing effect originates from the ability of the polarized [Ru-Cl] bond to engage in hydrogen bonding with the protic substituent, which helps upload, activate, and lock the alkyne within the coordination sphere. An additional interligand contact of the chloride with the -MR3 center positions the incoming reagent in a matching orientation that translates into high regioselectivity. The proposed secondary interactions within the loaded catalyst are in line with a host of preparative and spectral data and with the structures of the novel ruthenium π-complexes 10 and 11 in the solid state. Moreover, the first X-ray structure of a [Ru(σ-stannane)] complex (12a) is presented, which indeed features peripheral Ru-Cl···MR3 contacts; this adduct also corroborates that alkyne trans-addition chemistry likely involves σ-complexes as reactive intermediates. Finally, it is discussed that interligand cooperativity might constitute a more general principle that extends to mechanistically distinct transformations. The presented data therefore make an interesting case for organometallic chemistry that provides inherently better results when applied to substrates containing unprotected rather than protected -OH, -NHR, or -COOH groups.
[Cp*RuCl] (1) has previously been shown to be the precatalyst of choice for stereochemically unorthodox trans-hydrometalations of internal alkynes. Experimental and computational data now prove that the alkyne primarily acts as a four-electron donor ligand to the catalytically active metal fragment [Cp*RuCl] but switches to adopt a two-electron donor character once the reagent RMH (M = Si, Ge, Sn) enters the ligand sphere. In the stereodetermining step the resulting loaded complex evolves via an inner-sphere mechanism into a ruthenacyclopropene which swiftly transforms into the product. In accord with the low computed barriers, spectral and preparative data show that the reaction is not only possible but sometimes even favored at low temperatures. Importantly, such trans-hydrometalations are distinguished by excellent levels of regioselectivity when unsymmetrical alkynes are used that carry an -OH or -NHR group in vicinity of the triple bond. A nascent hydrogen bridge between the protic substituent and the polarized [Ru-Cl] unit imposes directionality onto the ligand sphere of the relevant intermediates, which ultimately accounts for the selective delivery of the RM- group to the acetylene C-atom proximal to the steering substituent. The interligand hydrogen bonding also allows site-selectivity to be harnessed in reactions of polyunsaturated compounds, since propargylic substrates bind more tightly than ordinary alkynes; even the electronically coupled triple bonds of conjugated 1,3-diynes can be faithfully discriminated as long as one of them is propargylic. Finally, properly positioned protic sites lead to a substantially increased substrate scope in that they render even 1,3-enynes, arylalkynes, and electron-rich alkynylated heterocycles amenable to trans-hydrometalation which are otherwise catalyst poisons.
Going for gold: The first thermally stable gold(III) hydride [(C N C)*AuH] is presented. It undergoes regioselective insertions with allenes to give gold(III) vinyl complexes, and reductive condensation with [(C N C)*AuOH] to the air-stable Au(II) product, [(C N C)*(2)Au(2)], with a short nonbridged gold-gold bond.
The gold(III) hydroxide κ(3)-(C^N^C)*Au(OH) reacts with C-H and N-H compounds and arylboronic acids to produce a range of perfluoroaryls, N-heterocyclic and alkynyl compounds in high yields; some of which show unexpectedly strong modulation of their photoluminescence from yellow to blue [(C^N^C)* = 2,6-(C(6)H(3)Bu(t))(2)pyridine].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.