Hyperspectral imaging is an optical method that provides a large amount of information about the investigated object. Its medical applications are reviewed in this article, including tumor delimitation and identification, assessing tissue perfusion and its pathological conditions (including some complications like diabetic foot ulceration), making accurate surgical decisions, evaluating the health of dental structures, etc. Many of the articles show very promising results that required brief comments by the authors. It is clear that choosing the appropriate hyperspectral imaging system for each medical field, together with the most reliable hyperspectral image processing methods, are the main goals of future studies, before hyperspectral imaging becomes a widely applicable evaluation method in medicine. The authors try to answer some questions on this topic and set up some directions for future research.
Hyperspectral imaging is a technology that is beginning to occupy an important place in medical research with good prospects in future clinical applications. We evaluated the role of hyperspectral imaging in association with a mixture-tuned matched filtering method in the characterization of open wounds. The methodology and the processing steps of the hyperspectral image that have been performed in order to obtain the most useful information about the wound are described in detail. Correlations between the hyperspectral image and clinical examination are described, leading to a pattern that permits relative evaluation of the square area of the wound and its different components in comparison with the surrounding normal skin. Our results showed that the described method can identify different types of tissues that are present in the wounded area and can objectively measure their respective abundance, which proves its value in wound characterization. In conclusion, the method that was described in this preliminary case presentation shows promising results, but needs further evaluation in order to become a reliable and useful tool.
Burn depth objective classification is of paramount importance for decision making and treatment. Despite the wide variety of burn depth assessment methods tested so far, none of them have gained wide clinical application. Here, we introduce a new approach for burn depth assessment based on hyperspectral imaging combined with a spectral indexbased technique that exploits specific spectral bands to map skin areas with different burn degrees. The spectral index amplifies the contrast between normal skin and areas with different degrees of burn, taking advantage of the differences in spectral amplitudes that occur as a result of the morphological and physiological changes occurring in burned skin. We demonstrate that by using the new measurable spectral index, it is possible to generate accurate burn classification maps showing spatial distribution of burn types in the affected body areas, facilitating the decision-making process and prognosis evaluation. The results highlight the potential of the new hyperspectral metric in the field of burn depth classification and its applicability in hospital settings seems promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.