Lyapunov's first method, extended by V. V. Kozlov to nonlinear mechanical systems, is applied to the study of the instability of the position of equilibrium of a mechanical system moving in the field of conservative and dissipative forces. The motion of the system is limited by ideal nonlinear nonholonomic constraints. Five cases determined by the relationship between the degree of the first nontrivial polynomials in Maclaurin's series for the potential energy and the functions that can be generated from the equations of nonlinear nonholonomic constraints are analyzed. In the three cases, the theorem on the instability of the position of equilibrium of nonholonomic systems with linear homogeneous constraints ) is generalized to the case of nonlinear nonhomogeneous constraints. In the other two cases, new theorems are set extending the result from V. V. Kozlov (1994) to nonholonomic systems with nonlinear constraints.
Lyapunov's first method, extended by Kozlov to nonlinear mechanical systems, is applied to study the instability of the equilibrium position of a mechanical system moving in the field of conservative and dissipative forces. The cases with a tensor of inertia or a matrix of coefficients of the Rayleigh dissipative function are analyzed singularly in the equilibrium position. This fact renders the impossible application of Lyapunov's approach in the analysis of the stability because, in the equilibrium position, the conditions of the existence and uniqueness of the solutions to the differential equations of motion are not fulfilled. It is shown that Kozlov's generalization of Lyapunov's first method can also be applied in the mentioned cases on the conditions that, besides the known algebraic expression, more are fulfilled. Three theorems on the instability of the equilibrium position are formulated. The results are illustrated by an example.
The paper considers a case of brachistrochronic motion of the mechanical system in the field of conservative forces, subject to the action of constraints with Coulomb friction. In this case an analogy is made between the two approaches of solving this problem of the mechanical system with two degrees of freedom. The mathematical model used to compute the brachistohrone in this special case of the multibody system with two deegres of freedom is based on varational calculus. The complete analogy is made with a solution in relation to material point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.