The cell membrane of astrocytes and oligodendrocytes is almost exclusively permeable for K+. Depolarizing and hyperpolarizing voltage steps produce in oligodendrocytes, but not in astrocytes, decaying passive currents followed by large tail currents (Itail) after the offset of a voltage jump. The aim of the present study was to characterize the properties of Itail in astrocytes, oligodendrocytes, and their respective precursors in the gray matter of spinal cord slices. Studies were carried out on 5- to 11-day-old rats, using the whole-cell patch clamp technique. The reversal potential (Vrev) of Itail evoked by membrane depolarization was significantly more positive in oligodendrocytes (-31.7+/-2.58 mV, n = 53) than in astrocytes (-57.9+/-2.43 mV, n = 21), oligodendrocyte precursors (-41.2+/-3.44 mV, n = 36), or astrocyte precursors (-52.1+/-1.32 mV, n = 43). Analysis of the Itail (using a variable amplitude and duration of the de- and hyperpolarizing prepulses as well as an analysis of the time constant of the membrane currents during voltage steps) showed that the Itail in oligodendrocytes arise from a larger shift of K+ across their membrane than in other cell types. As calculated from the Nernst equation, changes in Vrev revealed significantly larger accumulation of the extracellular K+ concentration ([K+]e) around oligodendrocytes than around astrocytes. The application of 50 mM K+ or hypotonic solution, used to study the effect of cell swelling on the changes in [K+]e evoked by a depolarizing prepulse, produced in astrocytes an increase in [K+]e of 201% and 239%, respectively. In oligodendrocytes, such increases (22% and 29%) were not found. We conclude that K+ tail currents, evoked by a larger accumulation of K+ in the vicinity of the oligodendrocyte membrane, could result from a smaller extracellular space (ECS) volume around oligodendrocytes than around astrocytes. Thus, in addition to the clearance of K+ from the ECS performed by astrocytes, the presence of the K+ tail currents in oligodendrocytes indicates that they might also contribute to efficient K+ homeostasis.
In rat brain and spinal cord slices, the local extracellular accumulation of K(+), as indicated by K(+) tail currents (I(tail)) after a depolarization step, is greater in the vicinity of oligodendrocytes than that of astrocytes. It has been suggested that this may reflect a smaller extracellular space (ECS) around oligodendrocytes compared to astrocytes [Chvátal et al. [1997] J. Neurosci. Res. 49:98-106; [1999] J. Neurosci. Res. 56:493-505). We therefore compared the effect of osmotic stress in spinal cord slices from 5-11-day-old rats on the changes in reversal potentials (V(rev)) of I(tail) measured by the whole-cell patch-clamp technique and the changes in ECS volume measured by the real-time iontophoretic method. Cell swelling induced by a 20 min perfusion of hypoosmotic solution (200 mmol/kg) decreased the ECS volume fraction from 0.21 +/- 0.01 to 0.15 +/- 0.02, i.e., by 29%. As calculated from V(rev) of I(tail) using the Nernst equation, a depolarizing prepulse increased [K(+)](e) around astrocytes from 11.0 to 44.7 mM, i.e., by 306%, and around oligodendrocytes from 26.1 to 54.9 mM, i.e., by 110%. The ECS volume fraction decrease had the same time course as the changes in V(rev) of I(tail). Cell shrinkage in hyperosmotic solution (400 mmol/kg) increased ECS volume fraction from 0.24 +/- 0.02 to 0.32 +/- 0.02, i.e., by 33%. It had no effect on [K(+)](e) evoked by a depolarizing prepulse in astrocytes, whereas in oligodendrocytes [K(+)](e) rapidly decreased from 52 to 26 mM, i.e., by 50%. The increase in ECS volume was slower than the changes in [K(+)](e). These data demonstrate that hypoosmotic solution has a larger effect on the ECS volume around astrocytes than around oligodendrocytes and that hyperosmotic solution affects the ECS volume around oligodendrocytes only. This indicates that increased K(+) accumulation in the vicinity of oligodendrocytes could be due to a restricted ECS. Oligodendrocytes in the CNS are therefore most likely surrounded by clusters of "compacted" ECS, which may selectively affect the diffusion of neuroactive substances in specific areas and directions and facilitate spatial K(+) buffering.
In rat brain and spinal cord slices, the local extracellular accumulation of K(+), as indicated by K(+) tail currents (I(tail)) after a depolarization step, is greater in the vicinity of oligodendrocytes than that of astrocytes. It has been suggested that this may reflect a smaller extracellular space (ECS) around oligodendrocytes compared to astrocytes [Chvátal et al. [1997] J. Neurosci. Res. 49:98-106; [1999] J. Neurosci. Res. 56:493-505). We therefore compared the effect of osmotic stress in spinal cord slices from 5-11-day-old rats on the changes in reversal potentials (V(rev)) of I(tail) measured by the whole-cell patch-clamp technique and the changes in ECS volume measured by the real-time iontophoretic method. Cell swelling induced by a 20 min perfusion of hypoosmotic solution (200 mmol/kg) decreased the ECS volume fraction from 0.21 +/- 0.01 to 0.15 +/- 0.02, i.e., by 29%. As calculated from V(rev) of I(tail) using the Nernst equation, a depolarizing prepulse increased [K(+)](e) around astrocytes from 11.0 to 44.7 mM, i.e., by 306%, and around oligodendrocytes from 26.1 to 54.9 mM, i.e., by 110%. The ECS volume fraction decrease had the same time course as the changes in V(rev) of I(tail). Cell shrinkage in hyperosmotic solution (400 mmol/kg) increased ECS volume fraction from 0.24 +/- 0.02 to 0.32 +/- 0.02, i.e., by 33%. It had no effect on [K(+)](e) evoked by a depolarizing prepulse in astrocytes, whereas in oligodendrocytes [K(+)](e) rapidly decreased from 52 to 26 mM, i.e., by 50%. The increase in ECS volume was slower than the changes in [K(+)](e). These data demonstrate that hypoosmotic solution has a larger effect on the ECS volume around astrocytes than around oligodendrocytes and that hyperosmotic solution affects the ECS volume around oligodendrocytes only. This indicates that increased K(+) accumulation in the vicinity of oligodendrocytes could be due to a restricted ECS. Oligodendrocytes in the CNS are therefore most likely surrounded by clusters of "compacted" ECS, which may selectively affect the diffusion of neuroactive substances in specific areas and directions and facilitate spatial K(+) buffering.
The cell membrane of astrocytes and oligodendrocytes is almost exclusively permeable for K+. Depolarizing and hyperpolarizing voltage steps produce in oligodendrocytes, but not in astrocytes, decaying passive currents followed by large tail currents (Itail) after the offset of a voltage jump. The aim of the present study was to characterize the properties of Itail in astrocytes, oligodendrocytes, and their respective precursors in the gray matter of spinal cord slices. Studies were carried out on 5- to 11-day-old rats, using the whole-cell patch clamp technique. The reversal potential (Vrev) of Itail evoked by membrane depolarization was significantly more positive in oligodendrocytes (-31.7+/-2.58 mV, n = 53) than in astrocytes (-57.9+/-2.43 mV, n = 21), oligodendrocyte precursors (-41.2+/-3.44 mV, n = 36), or astrocyte precursors (-52.1+/-1.32 mV, n = 43). Analysis of the Itail (using a variable amplitude and duration of the de- and hyperpolarizing prepulses as well as an analysis of the time constant of the membrane currents during voltage steps) showed that the Itail in oligodendrocytes arise from a larger shift of K+ across their membrane than in other cell types. As calculated from the Nernst equation, changes in Vrev revealed significantly larger accumulation of the extracellular K+ concentration ([K+]e) around oligodendrocytes than around astrocytes. The application of 50 mM K+ or hypotonic solution, used to study the effect of cell swelling on the changes in [K+]e evoked by a depolarizing prepulse, produced in astrocytes an increase in [K+]e of 201% and 239%, respectively. In oligodendrocytes, such increases (22% and 29%) were not found. We conclude that K+ tail currents, evoked by a larger accumulation of K+ in the vicinity of the oligodendrocyte membrane, could result from a smaller extracellular space (ECS) volume around oligodendrocytes than around astrocytes. Thus, in addition to the clearance of K+ from the ECS performed by astrocytes, the presence of the K+ tail currents in oligodendrocytes indicates that they might also contribute to efficient K+ homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.