The relationship between neighbourhood tree canopy cover and heat-related ambulance calls during extreme heat events in Toronto, Canada Two thirds of Canadians reside in urban areas and 85% of recent population growth occurs in these areas. The intensity and duration of extreme hot weather events are predicted to increase in Canadian cities and in cities globally. It is well established that human suffering due to extreme heat is exacerbated in urban as compared to rural environments. Understanding the characteristics of urban landscapes that play the greatest roles in exacerbating the human health impact of extreme heat is thus imperative. This study explores the relationship between the amount of canopy cover from trees and the incidence of heat-related morbidity during extreme heat events in 544 neighbourhoods of Toronto, Ontario, Canada. Four extreme heat events from three years were studied. Heat-related ambulance calls were found to be 12.3% higher during the heat events than in the preceding or the following week. The number of heat-related ambulance calls was negatively correlated to canopy cover (Spearman Rank rho = −0.094, p = 0.029) and positively correlated to hard surface cover (Spearman Rank rho = 0.150, p < 0.001). Toronto neighbourhoods, as defined by Census Tracts, with less than 5% canopy cover had approximately five times as many heat-related calls as those with greater than 5% tree canopy cover, and nearly fifteen times as many heat-related calls as Census Tracts with greater than 70% tree canopy cover. These data suggest that even a marginal increase in the tree canopy cover from <5% to >5% could reduce heat-related ambulance calls by approximately 80%. These results have important implications for human health during heat events, particularly in the context of global climate change and urban heat islands, both of which are trending toward hotter urban environments in future.
Urban residents are at risk of health-related illness during extreme heat events but the dangers are not equal in all parts of a city. Previous studies have found a relationship between physical characteristics of neighborhoods and the number of emergency medical response (EMR) calls. We used a human energy budget model to test the effects of landscape modifications that are designed to cool the environment on the expected number of EMR calls in two neighborhoods in Toronto, Canada during extreme heat events. The cooling design strategies reduced the energy overload on people by approximately 20–30 W m−2, resulting in an estimated 40–50% reduction in heat-related ambulance calls. These findings advance current understanding of the relationship between the urban landscape and human health and suggest straightforward design strategies to positively influence urban heat-health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.