Obesity may account for as much as 65% to 75% of human essential hypertension in most industrialized countries. Excess renal sodium reabsorption and a hypertensive shift of renal-pressure natriuresis play a key role in mediating obesity hypertension. Sympathetic activation contributes to obesity-induced sodium retention and hypertension because adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with other neurochemical pathways in the hypothalamus may be a partial link between excess weight gain and increased sympathetic activity. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term intravenous leptin infusions in nonobese rodents at rates that raise plasma concentrations to the levels found in severe obesity increase arterial pressure and heart rate through adrenergic activation. Also, transgenic mice that overexpress leptin develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including melanocortin-4 receptors. However, it is unclear whether this pathway or others, such as neuropeptide Y, mediate the long-term effects of leptin on blood pressure. In addition, leptin has other actions, such as stimulation of nitric oxide formation and enhancement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the precise role of these complex interactions in human obesity has not been elucidated, this is an important area for further investigation, especially considering the current epidemic of obesity in most industrialized countries.
In all forms of chronic hypertension, the renal-pressure natriuresis mechanism is abnormal because sodium excretion is the same as in normotension despite the increased blood pressure. However, the importance of this resetting of pressure natriuresis as a cause of hypertension is controversial. Theoretically, a resetting of pressure natriuresis could necessitate increased blood pressure to maintain sodium balance or it could occur secondarily to hypertension. Recent studies indicate that, in several models of experimental hypertension (including angiotensin II, aldosterone, adrenocorticotrophic hormone, and norepinephrine hypertension), a primary shift of renal-pressure natriuresis necessitates increased arterial pressure to maintain sodium and water balance. In genetic animal models of hypertension, there also appears to be a resetting of pressure natriuresis before the development of hypertension. Likewise, essential hypertensive patients exhibit abnormal pressure natriuresis, although the precise cause of this defect is not clear. It is likely that multiple renal defects contribute to resetting of pressure natriuresis in essential hypertensive patients. With long-standing hypertension, pathological changes that occur secondary to hypertension must also be considered. By analyzing the characteristics of pressure natriuresis in hypertensive patients and by comparing these curves to those observed in various forms of experimental hypertension of known origin, it is possible to gain insight into the etiology of this disease. (Hypertension 1990;15:547-559)
Abstract-Despite recent evidence indicating sustained activation of the baroreflex during chronic infusion of angiotensin II (Ang II), sinoaortic denervation does not exacerbate the severity of the hypertension. Therefore, to determine whether Ang II hypertension is relatively resistant to the blood pressure-lowering effects of the baroreflex, the carotid baroreflex was electrically activated bilaterally for 7 days in 5 dogs both in the presence and absence of a continuous infusion of Ang II (5 ng/kg per minute) producing high physiological plasma levels of the peptide. Under control conditions, basal values for mean arterial pressure (MAP) and plasma norepinephrine concentration (NE) were 93Ϯ1 mm Hg and 99Ϯ25 pg/mL, respectively. By day 7 of baroreflex activation, MAP and NE were reduced to 72Ϯ4 mm Hg (Ϫ21Ϯ3 mm Hg) and 56Ϯ15 pg/mL, respectively, but PRA was unchanged (controlϭ0.41Ϯ0.06 ng ANG I/mL per hour). All values returned to basal levels by the end of a 7-day recovery period. After 7 days of Ang II infusion, MAP increased from 93Ϯ3 to 129Ϯ3 mm Hg, whereas NE fell from 117Ϯ15 to 86Ϯ23 pg/mL. During the next 7 days of baroreflex activation/Ang II infusion, further reductions in NE were not statistically significant, and on the final day of baroreflex activation, the reduction in MAP was only 5Ϯ1 mm Hg, compared with 21Ϯ3 mm Hg in the control normotensive state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.