Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS) is a powerful tool for studying a wide range of surface and electrochemical phenomena. For most electrochemical experiments the evanescent field of an IR beam partially penetrates through a thin metal electrode deposited on top of an attenuated total reflection (ATR) crystal to interact with molecules of interest. Despite its success, a major problem that complicates quantitative interpretation of the spectra from this method is the ambiguity of the enhancement factor due to plasmon effects in metals. We developed a systematic method for measuring this, which relies upon independent determination of surface coverage by Coulometry of a surface-bound redoxactive species. Following that, we measure the SEIRAS spectrum of the surface bound species, and from the knowledge of surface coverage, retrieve the effective molar absorptivity, ε SEIRAS . Comparing this to the independently determined bulk molar absorptivity leads us to the enhancement factor f = ε SEIRAS /ε bulk . We report enhancement factors in excess of 1000 for the C−H stretches of surface bound ferrocene molecules. We additionally developed a methodical approach to measure the penetration depth of the evanescent field from the metal electrode into a thin film. Such systematic measure of the enhancement factor and penetration depth will help SEIRAS advance from a qualitative to a more quantitative method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.