Base excision repair is the system used from bacteria to man to remove the tens of thousands of endogenous DNA damages produced daily in each human cell. Base excision repair is required for normal mammalian development and defects have been associated with neurological disorders and cancer. In this paper we provide an overview of short patch base excision repair in humans and summarize current knowledge of defects in base excision repair in mouse models and functional studies on short patch base excision repair germ line polymorphisms and their relationship to cancer. The biallelic germ line mutations that result in MUTYH-associated colon cancer are also discussed.
Each day, approximately 20,000 oxidative lesions form in the DNA of every nucleated human cell. The base excision repair (BER) enzymes that repair these lesions must function in a chromatin milieu. We have determined that the DNA glycosylase hNTH1, apurinic endonuclease (APE), and DNA polymerase  (Pol ), which catalyze the first three steps in BER, are able to process their substrates in both 601-and 5S ribosomal DNA (rDNA)-based nucleosomes. hNTH1 formed a discrete ternary complex that was displaced by the addition of APE, suggesting an orderly handoff of substrates from one enzyme to the next. In contrast, DNA ligase III␣-XRCC1, which completes BER, was appreciably active only at concentrations that led to nucleosome disruption. Ligase III␣-XRCC1 was also able to bind and disrupt nucleosomes containing a single base gap and, because of this property, enhanced both its own activity and that of Pol  on nucleosome substrates. Collectively, these findings provide insights into ratelimiting steps that govern BER in chromatin and reveal a unique role for ligase III␣-XRCC1 in enhancing the efficiency of the final two steps in the BER of lesions in nucleosomes.Reactive oxygen species (ROS), generated as by-products of normal aerobic cellular metabolism or from exposure to exogenous agents, such as gamma irradiation, generate approximately 20,000 DNA damage events per day in each nucleated human cell. The DNA lesions produced include numerous oxidative base damages, apurinic/apyrimidinic (AP) sites, and single-strand DNA breaks (6). Base excision repair (BER) enzymes recognize and replace oxidized bases with the corresponding undamaged bases. In its simplest ("short-patch") form, BER entails four enzymatic steps (1,10,21,23,51,53) (Fig. 1A), beginning with the recognition and excision of a damaged base by either a mono-or bifunctional DNA glycosylase. Bifunctional glycosylases first cleave the glycosidic bond between the damaged base and the deoxyribose and then cleave the phosphodiester bond 3Ј of the resulting AP site. AP endonuclease (APE) removes a residual moiety to generate a single nucleotide gap, with a 3Ј-OH group that can be filled by DNA polymerase  (Pol ). Finally, DNA ligase III-␣ (LigIII␣), in association with XRCC1, catalyzes the formation of a phosphodiester bond between the 3Ј-OH of the newly added nucleotide and the adjacent downstream 5Ј-phosphate.The nucleosomes that package most of the nuclear DNA in eukaryotes provide only minimal protection from ROS (14, 31); a small degree of protection from hydroxyl radicals is evident in DNA segments where the minor groove faces into the histone octamer (20), and histones themselves may act as a sink for ROS, thereby reducing the frequency of free-radicalinflicted DNA damage (28). Clearly, however, nucleosomal DNA is vulnerable to oxidative damage that must be made available to BER enzymes. Chromatin remodeling agents and histone chaperones facilitate most processes involving chromatin, and the other DNA repair pathways-nucleotide excision repair, mismatc...
Background:Previous small scale studies indicate that DNA polymerase  variants are present in 30% of human tumors. Results: 40% of samples in a large human colorectal tumor collection harbor coding region variants, many of which exhibit altered function. Conclusion: Aberrant activity or fidelity phenotypes exhibited by variants may contribute to tumorigenesis. Significance: Expression of variants in human tumors plays a role in driving carcinogenesis.
Helicobacter pylori infection of the human stomach is associated with inflammation that leads to the release of reactive oxygen and nitrogen species (RONs), eliciting DNA damage in host cells. Unrepaired DNA damage leads to genomic instability that is associated with cancer. Base excision repair (BER) is critical to maintain genomic stability during RONs-induced DNA damage, but little is known about its role in processing DNA damage associated with H. pylori infection of normal gastric epithelial cells. Here, we show that upon H. pylori infection, abasic (AP) sites accumulate and lead to increased levels of double-stranded DNA breaks (DSBs). In contrast, downregulation of the OGG1 DNA glycosylase decreases the levels of both AP sites and DSBs during H. pylori infection. Processing of AP sites during different phases of the cell cycle leads to an elevation in the levels of DSBs. Therefore, the induction of oxidative DNA damage by H. pylori and subsequent processing by BER in normal gastric epithelial cells has the potential to lead to genomic instability that may have a role in the development of gastric cancer. Our results are consistent with the interpretation that precise coordination of BER processing of DNA damage is critical for the maintenance of genomic stability.
Background: Mutations in the POLB gene are present in 40% of human colorectal tumors. Results: The G231D variant is a slow polymerase that induces genomic instability and cellular transformation. Conclusion:The slow G231D variant induces cellular transformation due to its inability to fill in single nucleotide gaps. Significance: Slow pol  variants may drive tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.