House dust mite (HDM) allergens are the most prevalent allergens associated with asthma and rhinitis around the world. The mechanisms of allergic sensitization and allergic airway inflammation after exposure to HDM have been studied extensively, but many questions remain unanswered. Airway epithelial cells are the first line of defense against external antigens and are considered an important player in the development of allergic airway inflammation. Both genetic susceptibility to allergic sensitization and HDM composition play decisive roles in the outcome of HDM-epithelium interactions, especially regarding airway epithelial dysfunction and allergic inflammation. Interactions between HDM and the airway epithelium have consequences for both development of allergy and asthma and development of allergic airway inflammation. This review will describe in detail these interactions and will identify issues that require more study.
Elevated levels of circulating CD4(+) CRTh2(+) T cells are a feature of severe asthma, despite high-dose corticosteroids. Tracking the systemic level of these cells may help identify type 2 severe asthmatics at risk of exacerbation.
Bacterial resistance to conventional antibiotics is a major challenge in controlling infectious diseases and has necessitated the development of novel approaches in antimicrobial therapy. One such approach is the use of antimicrobial peptides, such as the bacterially produced bacteriocins. Carnocyclin A (CclA) is a 60-amino acid circular bacteriocin produced by Carnobacterium maltaromaticum UAL307 that exhibits potent activity against many Gram-positive bacteria. Lipid bilayer and single channel recording techniques were applied to study the molecular mechanisms by which CclA interacts with the lipid membrane and exerts its antimicrobial effects. Here we show that CclA can form ion channels with a conductance of 35 pS in 150 mM NaCl solution. This channel displays a linear current-voltage relationship, is anion-selective, and its activation is strongly voltage-dependent. The formation of ion channels by CclA is driven by the presence of a negative membrane potential and may result in dissipation of membrane potential. Carnocyclin A's unique functional activities as well as its circular structure make it a potential candidate for developing novel antimicrobial drugs.
Background Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function. Methods Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR) and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Clchannels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches. Results Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC 50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl − channel blocker. Polystyrene nanoparticles activated basolateral K + channels and affected Cl − and HCO 3 − secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl − channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl − channels by the nanoparticles. Conclusion This is the first study to identify the activation of ion channels in airway cells after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due to the fact that they may have the ability to affect epithelial cell function and physiological processes on their own.
BackgroundProtease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied.MethodsWe recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry.ResultsSubjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations.ConclusionsPAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.