The noncentrosymmetric superconductor (NCS) AuBe is investigated using a variety of thermodynamic and resistive probes in magnetic fields of up to 65 T and temperatures down to 0.3 K. Despite the polycrystalline nature of the samples, the observation of a complex series of de Haasvan Alphen (dHvA) oscillations has allowed the calculated bandstructure for AuBe to be validated. This permits a variety of BCS parameters describing the superconductivity to be estimated, despite the complexity of the measured Fermi surface. In addition, AuBe displays a nonstandard field dependence of the phase of dHvA oscillations associated with a band thought to host unconventional fermions in this chiral lattice. This result demonstrates the power of the dHvA effect to establish the properties of a single band despite the presence of other electronic bands with a larger density of states, even in polycrystalline samples. In common with several other NCSs, we find that the resistive upper critical field exceeds that measured by heat capacity and magnetization by a considerable factor. We suggest that our data exclude mechanisms for such an effect associated with disorder, implying that topologically protected superconducting surface states may be involved. arXiv:1812.02830v2 [cond-mat.supr-con]
Single crystals of CeCo(2-x)M(x)Al(8) (M = Mn, Fe, Ni; 0 ≤ x < 1) were grown and characterized by X-ray diffraction and magnetic susceptibility. The unit cell volumes of Mn-doped compounds increase and those of Ni-doped compounds decrease with increasing dopant concentration. All samples display a magnetic ordering near 6 K with magnetic moments of the analogues ranging from 2.61 to 2.81 μ(B)/mol Ce and slightly higher than Ce(3+) only magnetic moment. The unit cell volumes of Fe-doped compounds also increase with increasing Fe concentration. However, the cell volume of CeCo(2-x)Fe(x)Al(8) decreases for x = 1.00 and is not Curie-Weiss possibly because of valence fluctuation.
We report an observation of large magnetocaloric effect in clathrate compounds. Systematic dc magnetization in polycrystalline Eu8Ga16Ge30 clathrates was studied in the temperature range of 5–60 K and over an applied field range of 0–3 T. Change in entropy (ΔSmag) was calculated using the Maxwell relation from the family of M-H curves at different temperatures in the vicinity of the ferromagnetic Curie temperatures. Large entropy changes of 6 and 9.3J∕kgK were observed for the type-I and type-VIII phases, respectively. The larger effect in type-VIII samples can be associated with the sharper ferromagnetic transition. Overall, these results indicate that the clathrates known to have potential for excellent thermoelectric properties are also promising candidates as magnetic refrigerant materials.
Using the experimental capability of the novel X-ray diffraction instrument available at the 25 Tesla Florida Split Coil Magnet at the NHMFL, Tallahassee we present an extensive investigation on the magnetostriction of polycrystalline AlFe2B2. The magnetostriction was measured near the ferromagnetic transition temperature (Curie temperature TC = 280 K, determined via DC magnetization measurements), namely, at 250, 290, and 300 K. AlFe2B2 exhibits an anisotropic change in lattice parameters as a function of magnetic field near the Curie temperature, and a monotonic variation as a function of applied field has been observed, i.e., the c-axis increases significantly while the a-and b-axes decrease with the increasing field in the vicinity of TC, irrespective of the measurement temperature. The volume magnetostriction decreases with decreasing temperature and changes its sign across TC. Density functional theory calculations for the non-polarized and spin-polarized (ferromagnetic) models confirm that the observed changes in lattice parameters due to spin polarization are consistent with the experiment. The relationships for magnetostriction are estimated based on a simplified Landau model that agrees well with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.