Sepsis-associated encephalopathy (SAE) is associated with an increased rate of morbidity and mortality. It is not understood what the exact mechanism is for the brain dysfunction that occurs in septic patients, but brain inflammation and oxidative stress are a possible theory. Such events can occur through the alteration of molecules that perpetuate the inflammatory response. Thus, it is possible to postulate that CD40 may be involved in this process. The aim of this work is to evaluate the role of CD40-CD40L pathway activation in brain dysfunction associated with sepsis in an animal model. Microglia activation induces the upregulation of CD40-CD40L, both in vitro and in vivo. The inhibition of microglia activation decreases levels of CD40-CD40L in the brain and decreases brain inflammation, oxidative damage and blood brain barrier dysfunction. Despite this, anti-CD40 treatment does not improve mortality in this model. However, it is able to improve long-term cognitive impairment in sepsis survivors. In conclusion, there is a major involvement of the CD40-CD40L signaling pathway in long-term brain dysfunction in an animal model of sepsis.
Sepsis progression is linked with the imbalance between reactive oxygen species and antioxidant enzymes. Thus, the aim of this study was to evaluate the effect of alpha-lipoic acid (ALA), a powerful antioxidant, in organs of rats submitted to sepsis. Male Wistar rats were subjected to sepsis by cecal ligation puncture (CLP) and treated with ALA or vehicle. After CLP (12 and 24 h), the myeloperoxidase (MPO) activity, protein and lipid oxidative damage, and antioxidant enzymes in the liver, kidney, heart, and lung were evaluated. ALA was effective in reducing MPO activity, lipid peroxidation in the liver, and protein carbonylation only in the kidney in 12 h after CLP. In 12 h, SOD activity increased in the kidney and CAT activity in the liver and kidney with ALA treatment. Thus, ALA was able to reduce the inflammation and oxidative stress in the liver and kidney after sepsis in rats.
Complex regional pain syndrome type I (CRPS-I) is a chronic painful condition. We investigated whether manual therapy (MT), in a chronic post-ischemia pain (CPIP) model, is capable of reducing pain behavior and oxidative stress. Male Swiss mice were subjected to ischemia-reperfusion (IR) to mimic CRPS-I. Animals received ankle joint mobilization 48h after the IR procedure, and response to mechanical stimuli was evaluated. For biochemical analyses, mitochondrial function as well as oxidative stress thiobarbituric acid reactive substances (TBARS), protein carbonyls, antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) levels were determined. IR induced mechanical hyperalgesia which was subsequently reduced by acute MT treatment. The concentrations of oxidative stress parameters were increased following IR with MT treatment preventing these increases in malondialdehyde (MDA) and carbonyls protein. IR diminished the levels of SOD and CAT activity and MT treatment prevented this decrease in CAT but not in SOD activity. IR also diminished mitochondrial complex activity, and MT treatment was ineffective in preventing this decrease. In conclusion, repeated sessions of MT resulted in antihyperalgesic effects mediated, at least partially, through the prevention of an increase of MDA and protein carbonyls levels and an improvement in the antioxidant defense system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.