Propellers are the predominant propulsion source for small unmanned aerial vehicles. At low advance ratios, large sections of the propeller blade can be stalled, and the Reynolds number faced by each blade can be low. This leads to difficulties in modelling propeller performance, as the aerodynamic models coupled with blade element methods usually only provide aerodynamic data for an assumed aerofoil section, for a small angle-of-attack range and for a single Reynolds number, while rotational effects are often ignored. This is specifically important at low advance ratios, and a consistent evaluation of the applicability of various methods to improve aerodynamic modelling is not available. To provide a systematic appraisal, three-dimensional (3D) scanning is used to obtain the aerofoil sections that make up a propeller blade. An aerodynamic database is formed using each extracted aerofoil section, across a wide range of angles of attack and Reynolds numbers. These databases are then modified to include the effects of rotation. When compared with experimental results, significant improvement in modelling accuracy is shown at low advance ratios relative to a generic blade element-momentum model, particularly for smaller propellers. Notably, when considering small propeller performance, efficiency modelling is improved from within 30% relative to experimental data to within 5% with the use of the extended blade element momentum theory method. The results show that combining Viterna and Corrigan flat plate theory with the Corrigan and Schillings stall delay model consistently yields the closest match with experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.