Context: Medicinal and aromatic plants are used by people for various purposes, whether for health care, beauty, or as a food source. Aims: To valorize the knowledge about their uses, therapeutic, cosmetic, and food. Methods: The ethnobotanical study was conducted from November 1, 2019, to March 1, 2021, in the Moulay Yacoub region. A total of 407 local informants were interviewed. The methodological approach was open-ended and semi-structured interviews with open-ended questions based on therapeutic, cosmetic, and dietary criteria. Quantitative analyses were performed using basic statistics, use value (UV), family use value (FUV), plant part value (PPV), and informant agreement ratio (IAR). Results: A total of 104 plant species belonging to 46 families were identified. The majority of plants are used in phytotherapy (78.30%). The most frequent ailments reported were digestive (IAR = 0.9). The most used method of preparation was infusion (42.68%), the leaves were the most used part of the plant (PPV = 0.45), and Anchusa italica Retz (UV = 0.196) was the most commonly prescribed species by local herbalists, and Oleaceae (FUV = 0.16) was the most dominant family. Conclusions: This study showed the richness of the plants and the consistency of the knowledge of the natives on medicinal and aromatic plants. As part of this study, we are currently working on plants with curative effects to prove their efficacy in animal models, including Anchusa italica Retz, which was widely cited in this ethnobotanical study. Authors invite scientists to conduct further phytochemical and pharmacological research on medicinal plants from this region based on this study.
Anchusa italica Retz has been used for a long time in phytotherapy. The aim of the present study was to determine the antioxidant and antibacterial activities of extracts from the leaves and roots of Anchusa italica Retz. We first determined the content of phenolic compounds and flavonoids using Folin–Ciocalteu reagents and aluminum chloride (AlCl3). The antioxidant activity was determined using three methods: reducing power (FRAP), 2.2-diphenyl-1-picrylhydrazyl (DPPH), total antioxidant capacity (TAC). The antimicrobial activity was investigated against four strains of Escherichia coli, two strains of Klebsiella pneumoniae and coagulase-negative Staphylococcus, and one fungal strain of Candida albicans. The results showed that the root extract was rich in polyphenols (43.29 mg GAE/g extract), while the leave extract was rich in flavonoids (28.88 mg QE/g extract). The FRAP assay showed a strong iron reduction capacity for the root extract (IC50 of 0.11 µg/mL) in comparison to ascorbic acid (IC50 of 0.121 µg/mL). The DPPH test determined an IC50 of 0.11 µg/mL for the root extract and an IC50 of 0.14 µg/mL for the leaf extract. These values are low compared to those for ascorbic acid (IC50 of 0.16 µg/mL) and BHT (IC50 0.20 µg/mL). The TAC values of the leaf and root extracts were 0.51 and 0.98 mg AAE/g extract, respectively. In vitro, the extract showed inhibitory activity against all strains studied, with diameters of zones of inhibition in the range of 11.00–16.00 mm for the root extract and 11.67–14.33 mm for the leaf extract. The minimum inhibitory concentration was recorded for the leaf extract against E. coli (ATB:57), corresponding to 5 mg/mL. Overall, this research indicates that the extracts of Anchusa italica Retz roots and leaves exert significant antioxidant and antibacterial activities, probably because of the high content of flavonoids and polyphenols.
In Morocco, Cynara humilis L. is used in traditional medicine. The objective of this research was to research the antioxidant and antimicrobial properties of hydroethanolic extracts from the C. humilis plant’s leaves and roots. The content of polyphenols and flavonoids was evaluated using Folin–Ciocalteu’s and aluminum chloride assays. Two techniques were used to evaluate antioxidant properties: antioxidant capacity in total (TAC) and 2,2-diphenyl-1-picrylhdrazyl (DPPH). In antimicrobial assays, five pathogenic microbial strains were studied including two Escherichia coli, one coagulase-negative Staphylococcus and Klebsiella pneumoniae, and one Candida albicans, by two techniques: agar disk diffusion and microdilution. Leaves had a greater content of flavonoids 27.07 mg QE/g of extract and the polyphenols 38.84 mg GAE/g of extract than root 24.39 mg QE/g of extract and 29.39 mg GAE/g of extract, respectively. The TAC test value of the 0.77 mg AAE/g extract in the leaf extract was found to be significantly greater than that of the 0.60 mg EAA/g extract in the root extract. The DPPH antioxidant assay IC50 values of the root and leaf extract were 0.23 and 0.93 µg/mL, respectively. C. humilis extracts showed an antimicrobial effect against all tested strains, the inhibitory zone (DIZ) have values in the range between 12 and 15 mm. Moreover, the root extract showed the lowest minimum inhibitory concentration (MIC) against coagulase-negative Staphylococcus with an IC50 value of 6.25 mg/mL. The higher content of flavonoids and polyphenols in the hydroethanolic extracts of C. humilis leaves and roots demonstrates that they have a significant antimicrobial and antioxidant effect, as found in this study.
In addition to producing bioenergy and molecules with high added value, microalgae have been recognized as an efficient microorganism for wastewater treatment. However, a major obstacle preventing its widespread use is the high energy cost of pretreatment, cultivation and downstream processes. Different types of wastewaters have been tested as culture mediums for microalgal biorefinery system. This review gives a summary of the most used microalgae strains for wastewater treatment, as well as information on the physical and chemical characteristics of domestic, agricultural, and industrial wastewaters. It also discusses wastewater pretreatment techniques, nutrient uptake and removal, biomass production and biomolecules productivities. There is also discussion on how microalgae remove contaminants from wastewater. Additionally, the problems and restrictions of microalgae-based wastewater treatment are explored, and recommendations are made for additional study and advancement. This literature review demonstrates that microalgae monoculture systems have proven to be beneficial as an innovative wastewater treatment technology, due to its high efficiencies in pollutant removals and biomolecule production; however, the upstream and downstream treatment pose a limit to industrialize the process. Until now, there has been no conventional design of the wastewater treatment process using microalgae in the biorefinery system, which constitutes a huge gap to assess a real life cycle assessment (LCA) and techno economic analysis (TEA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.