A brain tumor is the cause of abnormal growth of cells in the brain. Magnetic resonance imaging (MRI) is the most practical method for detecting brain tumors. Through these MRIs, doctors analyze and identify abnormal tissue growth and can confirm whether the brain is affected by a tumor or not. Today, with the emergence of artificial intelligence techniques, the detection of brain tumors is done by applying the techniques and algorithms of machine learning and deep learning. The advantages of the application of these algorithms are the quick prediction of brain tumors, fewer errors, and greater precision, which help in decision-making and in choosing the most appropriate treatment for patients. In the proposed work, a convolution neural network (CNN) is applied with the aim of detecting the presence of a brain tumor and its performance is analyzed. The main purpose of this article is to adopt the approach of convolutional neural networks as a machine learning technique to perform brain tumor detection and classification. Based on training and testing results, the pre-trained architecture model reaches 96% in precision and classification accuracy rates. For the given dataset, CNN proves to be the better technique for predicting the presence of brain tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.