High Mountain Asia (HMA) glaciers are critical water reserves for montane regions, which are readily influenced by climate change. The glacier mass balance during 2000–2021 over HMA was estimated by comparing the elevations from ICESat-2 and the NASADEM. Radar penetration depth could be one of the intrinsic error sources in estimating glacier mass balance by using NASADEM. Therefore, we doubled elevation differences between the X-band Shuttle Radar Topography Missions (SRTMs) and NASADEM to estimate the potential error. The spatial characteristics of the altitude-dependent penetration depth can be detected in most sub-regions of HMA. Relatively deep penetrations in the Himalaya (2.3–3.7 m) and Hissar Alay (4.3 m) regions and small penetrations in the south-eastern HMA (1.0 m) were observed. The HMA region experienced a significant mass loss at a rate of −0.18 ± 0.12 m w.e. a−1, in which the Hengduan Shan exhibited the highest mass loss of −0.62 ± 0.10 m w.e. a−1, the West Kun Lun experienced a substantial mass gain of 0.23 ± 0.13 m w.e. a−1, and the Karakoram showed a more or less balance. Our results are in agreement with previous studies that assessed the mass balance of HMA glaciers from different methods.
Glacier mass balance is one of the most direct indicators reflecting corresponding climate change. In the context of global warming, most glaciers are melting and receding, which can have significant impacts on ecology, climate, and water resources. Thus, it is important to study glacier mass change, in order to assess and project its variations from past to future. Here, the Karakoram, one of the most concentrated glacierized areas in High-Mountain Asia (HMA), was selected as the study area. This study utilized SRTM-C DEM and ICESat-2 to investigate glacier mass change in the Karakoram, and its response to climatic and topographical factors during 2000–2021. The results of the data investigation showed that, overall, the “Karakoram Anomaly” still exists, with an annual averaged mass change rate of 0.02 ± 0.09 m w.e.yr−1. In different sub-regions, it was found that the western and central Karakoram glaciers gained ice mass, while the eastern Karakoram glaciers lost ice mass in the past two decades. In addition, it was discovered that the increasing precipitation trend is leading to mass gains in the western and central Karakoram glaciers, whereas increasing temperature is causing ice mass loss in the eastern Karakoram glacier. Generally, decreasing net shortwave radiation and increasing cloud cover in the Karakoram restricts ice mass loss, while topographical shading and debris cover also have dominant impacts on glacier mass change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.