PVD and FLP sensory neurons envelope the body of the C. elegans adult with a highly branched network of thin sensory processes. Both PVD and FLP neurons are mechanosensors. PVD is known to mediate the response to high threshold mechanical stimuli. Thus PVD and FLP neurons are similar in both morphology and function to mammalian nociceptors. To better understand the function of these neurons we generated strains lacking them. Behavioral analysis shows that PVD and FLP regulate movement under normal growth conditions, as animals lacking these neurons demonstrate higher dwelling behavior. In addition, PVD-whose thin branches project across the body-wall muscles-may have a role in proprioception, as ablation of PVD leads to defective posture. Moreover, movement-dependent calcium transients are seen in PVD, a response that requires MEC-10, a subunit of the mechanosensory DEG/ENaC channel that is also required for maintaining wild-type posture. Hence, PVD senses both noxious and innocuous signals to regulate C. elegans behavior, and thus combines the functions of multiple mammalian somatosensory neurons. Finally, strong mechanical stimulation leads to inhibition of egg-laying, and this response also depends on PVD and FLP neurons. Based on all these results we suggest that noxious signals perceived by PVD and FLP promote an escape behavior consisting of increased speed, reduced pauses and reversals, and inhibition of egg-laying.
AbstractÐScheduling jobs on the IBM SP2 system and many other distributed-memory MPPs is usually done by giving each job a partition of the machine for its exclusive use. Allocating such partitions in the order in which the jobs arrive (FCFS scheduling) is fair and predictable, but suffers from severe fragmentation, leading to low utilization. This situation led to the development of the EASY scheduler which uses aggressive backfilling: Small jobs are moved ahead to fill in holes in the schedule, provided they do not delay the first job in the queue. We compare this approach with a more conservative approach in which small jobs move ahead only if they do not delay any job in the queue and show that the relative performance of the two schemes depends on the workload: For workloads typical on SP2 systems, the aggressive approach is indeed better, but, for other workloads, both algorithms are similar. In addition, we study the sensitivity of backfilling to the accuracy of the runtime estimates provided by the users and find a very surprising result: Backfilling actually works better when users overestimate the runtime by a substantial factor.
Abstract. The scheduling of jobs on parallel supercomputer is becomhag the subject of much research. However, there is concern about the divergence of theory and practice. We review theoretical research in this area, and recommendations based on recent results. This is contrasted with a proposal for standard interfaces among the components of a scheduling system, that has grown from requirements in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.