The molecular geometries of isolated complexes in which a single molecule of C2H4 or C2H2 is bound to CuCl have been determined through pure rotational spectroscopy and ab-initio calculations. The C2H2···CuCl and C2H4···CuCl complexes are generated through laser vaporization of a copper rod in the presence of a gas sample undergoing supersonic expansion and containing C2H2 (or C2H4), CCl4, and Ar. Results are presented for five isotopologues of C2H2···CuCl and six isotopologues of C2H4···CuCl. Both of these complexes adopt C(2v), T-shaped geometries in which the hydrocarbon binds to the copper atom through its π electrons such that the metal is equidistant from all H atoms. The linear and planar geometries of free C2H2 and C2H4, respectively, are observed to distort significantly on attachment to the CuCl unit, and the various changes are quantified. The ∠(*-C-H) parameter in C2H2 (where * indicates the midpoint of the C≡C bond) is measured to be 192.4(7)° in the r0 geometry of the complex representing a significant change from the linear geometry of the free molecule. This distortion of the linear geometry of C2H2 involves the hydrogen atoms moving away from the copper atom within the complex. Ab-initio calculations at the CCSD(T)(F12*)/AVTZ level predict a dihedral ∠(HCCCu) angle of 96.05° in C2H4···CuCl, and the experimental results are consistent with such a distortion from planarity. The bonds connecting the carbon atoms within each of C2H2 and C2H4, respectively, extend by 0.027 and 0.029 Å relative to the bond lengths in the isolated molecules. Force constants, k(σ), and nuclear quadrupole coupling constants, χ(aa)(Cu), [χ(bb)(Cu) - χ(cc)(Cu)], χ(aa)(Cl), and [χ(bb)(Cl) - χ(cc)(Cl)], are independently determined for all isotopologues of C2H2···CuCl studied and for four isotopologues of C2H4···CuCl.
A new molecule C2H2···CuF has been synthesized in the gas phase by means of the reaction of laser-ablated metallic copper with a pulse of gas consisting of a dilute mixture of ethyne and sulfur hexafluoride in argon.
Molecular ions are key reaction intermediates in the interstellar medium. OH + plays a central role in the formation of more complex chemical species and for estimating the cosmic ray ionization rate in astrophysical environments. Here, we use a recent analysis of a laboratory spectrum in conjunction with ab initio methods to calculate infrared and ultraviolet oscillator strengths. These new oscillator strengths include branch dependent intensity corrections, arising from the Herman-Wallis effect, that have not been included before. We estimate 10% total uncertainty in the UV and 6% total uncertainty in the IR for the oscillator strengths.
Complexes of H3NCuF and H3NCuI have been synthesised in the gas phase and characterized by microwave spectroscopy. The rotational spectra of 4 isotopologues of H3NCuF and 5 isotopologues of H3NCuI have been measured in the 6.5-18.5 GHz frequency range using a chirped-pulse Fourier transform microwave spectrometer. Each complex is generated from a gas sample containing NH3 and a halogen-containing precursor diluted in Ar. Copper is introduced by laser ablation of a solid target prior to supersonic expansion of the sample into the vacuum chamber of the microwave spectrometer. The spectrum of each complex is characteristic of a symmetric rotor and a C3v geometry in which the N, Cu and X atoms (where X is F or I) lie on the C axis. The rotational constant (B0), centrifugal distortion constants (DJ and DJK), nuclear spin-rotation (Cbb(Cu) = Ccc(Cu)) constant (for H3NCuF only) and nuclear quadrupole coupling constants (χaa(X) where (X = N, Cu, I)) are fitted to the observed transition frequencies. Structural parameters are determined from the measured rotational constants and also calculated ab initio at the CCSD(T)(F12*)/AVQZ level of theory. Force constants describing the interaction between ammonia and each metal halide are determined from DJ for each complex. Trends in the interaction strengths and geometries of BCuX (B = NH3, CO) (X = F, Cl, Br, I) are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.