In contrast to porphyrins and chlorins, the direct metalation of bacteriochlorins is difficult. Nevertheless, Cu2+ and Zn2+ can be introduced into bacteriopheophytin in acetic acid, whereas Cd2+ can be inserted in dimethylformamide. The former reactions depend on the substituents of the isocyclic ring: they are facilitated if enolization of the β-ketoester system is inhibited. Starting with [Cd]-bacteriochlorophyll-a or its 132-hydroxy derivative, a series of metallo-bacteriochlorins with central divalent ions Pd2+, Co2+, Ni2+, Cu2+, Zn2+, and Mn2+ have been obtained by transmetalation. Like in the parent Mg complex, the four principal optical transitions are well-separated in these complexes, and their responses to changes in the central metal and its coordination state can be followed in detail. The energies of the Q y and B x transitions are almost independent of the central metal, whereas the Q x and B y transition energies change significantly, depending on the central metal as well as the presence of additional axial ligands. If the complexes are grouped by their coordination number, empirical linear correlations exist between these shifts and the ratio / , where is Pauling's electronegativity value and is the ionic radius of the metal. A similar correlation was found for those 1H NMR signals influenced mainly by the ring current and for the redox potentials. This observation was in contrast with the linear relationships with alone, found for metal-substituted porphyrins. The spectral variations influenced by the central metal and its state of ligation are attributed, within the framework of the four-orbital model, to the electrostatic interaction of the electron densities in the four orbitals with the effective charge of the central metal ions, which is most pronounced for the a2u orbital (HOMO-1). Ligation studies have revealed that addition of the first axial ligand decreases the effective charge of the central metal by approximately 50% and addition of the second axial ligand by another 20% with respect to the absence of axial ligands. The singlet−triplet splitting deduced from fluorescence and phosphorescence measurements is similar for [Pd]-, [Cu]-, [Zn]-, and [Mg]-BChl (4550 ± 100 cm-1).
The role of zinc, an essential element for normal brain function, in the pathology of Alzheimer's disease (AD) is poorly understood. On one hand, physiological and genetic evidence from transgenic mouse models supports its pathogenic role in promoting the deposition of the amyloid beta-protein (Abeta) in senile plaques. On the other hand, levels of extracellular ("free") zinc in the brain, as inferred by the levels of zinc in cerebrospinal fluid, were found to be too low for inducing Abeta aggregation. Remarkably, the release of transient high local concentrations of zinc during rapid synaptic events was reported. The role of such free zinc pulses in promoting Abeta aggregation has never been established. Using a range of time-resolved structural and spectroscopic techniques, we found that zinc, when introduced in millisecond pulses of micromolar concentrations, immediately interacts with Abeta 1-40 and promotes its aggregation. These interactions specifically stabilize non-fibrillar pathogenic related aggregate forms and prevent the formation of Abeta fibrils (more benign species) presumably by interfering with the self-assembly process of Abeta. These in vitro results strongly suggest a significant role for zinc pulses in Abeta pathology. We further propose that by interfering with Abeta self-assembly, which leads to insoluble, non-pathological fibrillar forms, zinc stabilizes transient, harmful amyloid forms. This report argues that zinc represents a class of molecular pathogens that effectively perturb the self-assembly of benign Abeta fibrils, and stabilize harmful non-fibrillar forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.