Canopy throughfall comprises the largest portion of net precipitation that is delivered to the forest floor. This water flux is highly variable across space and time and is influenced by species composition, canopy foliage, stand structure, and storm meteorological characteristics. In upland forests throughout the central hardwoods region of the Eastern United States, a compositional shift is occurring from oak-hickory to more mesic, shade-tolerant species such as red maple, sweetgum, and winged elm. To better understand the impacts of this shift on throughfall flux and the hydrologic budget, we monitored throughfall for one year in Northern Mississippi under the crowns of midstory and overstory oak (post oak and southern red oak) and non-oak species (hickory, red maple, and winged elm). In general, oak had more throughfall than co-occurring non-oak species in both canopy levels. In the overstory during the leaf-off canopy phase, white oak had relatively higher throughfall partitioning (standardized z-score = 0.54) compared to all other species (z-score = −0.02) (p = 0.004), while in the leaf-on canopy phase, red maple had relatively lower throughfall (z-score = −0.36) partitioning compared to all other species (z-score = 0.11). In the midstory, red maple was the only species to exhibit a difference in throughfall between canopy phases, with much lower throughfall in the leaf-off compared to the leaf-on canopy phase (z-score = −0.30 vs. 0.202, p = 0.039). Additionally, throughfall under oak crowns was less variable than under non-oak crowns. These results provide evidence that the spatial and temporal distribution of throughfall inputs under oak crowns are different than non-oak species, likely due to differences in crown architecture (i.e., depth and density). As oak dominance diminishes in these forests, it is possible that the portion of rainfall diverted to throughfall may decrease as well. The net impacts to watershed hydrology are still unknown, but these results provide one mechanism by which the distribution of water resources may be affected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.