We constructed a novel design integrating the administration of a clinical self-assessment scale with simultaneous acquisition of functional Magnetic Resonance Imaging (fMRI), aiming at cross-validation between psychopathology evaluation and neuroimaging techniques. We hypothesized that areas demonstrating differential activation in two groups of patients (the first group exhibiting paranoid delusions in the context of paranoid schizophrenia—SCH—and second group with a depressive episode in the context of major depressive disorder or bipolar disorder—DEP) will have distinct connectivity patterns and structural differences. Fifty-one patients with SCH (n = 25) or DEP (n = 26) were scanned with three different MRI sequences: a structural and two functional sequences—resting-state and task-related fMRI (the stimuli represent items from a paranoid-depressive self-evaluation scale). While no significant differences were found in gray matter volumes, we were able to discriminate between the two clinical entities by identifying two significant clusters of activations in the SCH group—the left Precuneus (PreCu) extending to the left Posterior Cingulate Cortex (PCC) and the right Angular Gyrus (AG). Additionally, the effective connectivity of the middle frontal gyrus (MFG), a part of the Dorsolateral Prefrontal Cortex (DLPFC) to the Anterior Insula (AI), demonstrated a significant difference between the two groups with inhibitory connection demonstrated only in SCH. The observed activations of PreCu, PCC, and AG (involved in the Default Mode Network DMN) might be indirect evidence of the inhibitory connection from the DLPFC to AI, interfering with the balancing function of the insula as the dynamic switch in the DMN. The findings of our current study might suggest that the connectivity from DLPFC to the anterior insula can be interpreted as evidence for the presence of an aberrant network that leads to behavioral abnormalities, the manifestation of which depends on the direction of influence. The reduced effective connectivity from the AI to the DLPFC is manifested as depressive symptoms, and the inhibitory effect from the DLPFC to the AI is reflected in the paranoid symptoms of schizophrenia.
Traditional therapeutic methods in psychiatry, such as psychopharmacology and psychotherapy help many people suffering from mental disorders, but in the long-term prove to be effective in a relatively small proportion of those affected. Therapeutically, resistant forms of mental disorders such as schizophrenia, major depressive disorder, and bipolar disorder lead to persistent distress and dysfunction in personal, social, and professional aspects. In an effort to address these problems, the translational approach in neuroscience has initiated the inclusion of novel or modified unconventional diagnostic and therapeutic techniques with promising results. For instance, neuroimaging data sets from multiple modalities provide insight into the nature of pathophysiological mechanisms such as disruptions of connectivity, integration, and segregation of neural networks, focusing on the treatment of mental disorders through instrumental biomedical methods such as electro-convulsive therapy (ECT), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS). These methodologies have yielded promising results that have yet to be understood and improved to enhance the prognosis of the severe and persistent psychotic and affective disorders. The current review is focused on the translational approach in the management of schizophrenia and mood disorders, as well as the adaptation of new transdisciplinary diagnostic tools such as neuroimaging with concurrently administered psychopathological questionnaires and integration of the results into the therapeutic framework using various advanced instrumental biomedical tools such as ECT, TMS, tDCS and DBS.
BACKGROUND Over the past decade, resting-state functional magnetic resonance imaging (rs-fMRI) has concentrated on brain networks such as the default mode network (DMN), the salience network (SN), and the central executive network (CEN), allowing for a better understanding of cognitive deficits observed in mental disorders, as well as other characteristic psychopathological phenomena such as thought and behavior disorganization. AIM To investigate differential patterns of effective connectivity across distributed brain networks involved in schizophrenia (SCH) and mood disorders. METHODS The sample comprised 58 patients with either paranoid syndrome in the context of SCH ( n = 26) or depressive syndrome (Ds) ( n = 32), in the context of major depressive disorder or bipolar disorder. The methods used include rs-fMRI and subsequent dynamic causal modeling to determine the direction and strength of connections to and from various nodes in the DMN, SN and CEN. RESULTS A significant excitatory connection from the dorsal anterior cingulate cortex to the anterior insula (aI) was observed in the SCH patient group, whereas inhibitory connections from the precuneus to the ventrolateral prefrontal cortex and from the aI to the precuneus were observed in the Ds group. CONCLUSION The results delineate specific patterns associated with SCH and Ds and offer a better explanation of the underlying mechanisms of these disorders, and inform differential diagnosis and precise treatment targeting.
Translational validity (or trans-disciplinary validity) is defined as one possible approach to achieving incremental validity by combining simultaneous clinical state-dependent measures and functional MRI data acquisition. It is designed under the assumption that the simultaneous administration of the two methods may produce a dataset with enhanced synchronization and concordance. Translational validation aims at “bridging” the explanatory gap by implementing validated psychometric tools clinically in the experimental settings of fMRI and then translating them back to clinical utility. Our studies may have identified common diagnostic task-specific denominators in terms of activations and network modulation. However, those common denominators need further investigation to determine whether they signify disease or syndrome-specific features (signatures), which, at the end of the day, raises one more question about the poverty of current conventional psychiatric classification criteria. We propose herewith a novel algorithm for translational validation based on our explorative findings. The algorithm itself includes pre-selection of a test based on its psychometric characteristics, adaptation to the functional MRI paradigm, exploration of the underpinning whole brain neural correlates in healthy controls as compared to a patient population with certain diagnoses, and finally, investigation of the differences between two or more diagnostic classes.
This paper reviews the contemporary trends in the pathobiochemistry of neurodegenerative disorders with respect to their early predictive diagnosis and possible treatment interventions. If we consider the current epidemiological data related to neurodegenerative disorders, medicine is going to face in the near future latent pandemic situations. The introduction puts an emphasis on the emerging importance of one major cluster of neurodegenerative disorders: diseases of the abnormal protein beta-conformation. The cluster includes such significant diseases as Alzheimer, Pick, Huntington, Parkinson disease, as well as the transmissible spongiform encephalopathies (Creuzfeldt-Jakob disease). The pathogenetic mechanisms in the determination of this group of disorders are explored with an emphasis on the impairment of post-synthetic chaperone correction. The central role of a number of such protein products is discussed. In particular the pathobiochemical mechanisms concerning the formation of beta-amyloid, alpha and beta synucleins, scrapie isoform of the prion protein are presented. A new diagnostic principle allowing the early and specific diagnosis of the conformation diseases protein via amplification techniques is presented. These methods compete in sensitivity with the PCR methods and shows promises for effective treatment. In conclusion, beta-pathies are considered a suitable example for the modern concept of cluster and prototype diagnosis in medicine and especially in clinical neurosciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.