Across the globe terrestrial ectotherms-amphibians and non-avian reptiles-are facing a range of emerging challenges. Increasing global temperatures, in particular, are affecting all aspects of ectotherm biology and life history. Embryonic development is a thermally sensitive period of the organismal lifecycle, yet the impacts of thermal stress on the early development of ectotherms have significantly lagged behind studies of later stages and adult thermal physiology. Morphogenesis, the stage where the major anatomical systems are actively forming, is particularly sensitive to thermal stress, yet is not studied as often as later stages where growth is the primary process happening within the egg. Here, we focus on the effects of thermal stress on the first 12 days of development, the stages of morphogenesis, in the lizard Anolis sagrei. We examine the resiliency of the early developmental stages to heat stress by incubating eggs at temperatures that parallel conditions observed today and predicted over the next 50-100 years of projected climate change. Our results suggest that some anole nests are currently at the thermal limits for which the early embryonic stages can properly develop. Our results emphasize the importance of studying early embryonic stages of development and the importance of studying stage-specific effects of thermal stress on squamate development.
Synopsis Every stage of organismal life history is being challenged by global warming. Many species are already experiencing temperatures approaching their physiological limits; this is particularly true for ectothermic species, such as lizards. Embryos are markedly sensitive to thermal insult. Here, we demonstrate that temperatures currently experienced in natural nesting areas can modify gene expression levels and induce neural and craniofacial malformations in embryos of the lizard Anolis sagrei. Developmental abnormalities ranged from minor changes in facial structure to significant disruption of anterior face and forebrain. The first several days of postoviposition development are particularly sensitive to this thermal insult. These results raise new concern over the viability of ectothermic species under contemporary climate change. Herein, we propose and test a novel developmental hypothesis that describes the cellular and developmental origins of those malformations: cell death in the developing forebrain and abnormal facial induction due to disrupted Hedgehog signaling. Based on similarities in the embryonic response to thermal stress among distantly related species, we propose that this developmental hypothesis represents a common embryonic response to thermal insult among amniote embryos. Our results emphasize the importance of adopting a broad, multidisciplinary approach that includes both lab and field perspectives when trying to understand the future impacts of anthropogenic change on animal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.