An increase in spectrin oxidation in a variety of erythrocytes displaying a tendency to vesiculate has been previously described. To explore this relationship in more detail, we have studied blood stored in citrate-phosphate-dextrose-adenine under blood bank conditions because, in this system, vesiculation occurs slowly. Vesiculation was quantitated by measuring acetylcholinesterase release, and the extent of spectrin oxidation was detected by using thiol-disulfide exchange chromatography. A strong correlation (r = .92) was found between the extent of spectrin oxidation and vesiculation when blood from five donors was analyzed at weekly intervals during storage. This strongly suggests that spectrin oxidation plays a role in the formation of spectrin-free vesicles, thereby limiting the shelf life of stored blood.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is characterized by the loss of NADPH and enhanced erythrocyte oxidant sensitivity. Historically, it has been theorized that the elevated oxidant sensitivity of G6PD-deficient erythrocytes arises as the direct consequence of decreased intracellular glutathione (GSH) concentrations. To directly investigate the basis of G6PD deficiency oxidant sensitivity, the effects of altered GSH and NADPH concentrations were examined in normal and G6PD-deficient erythrocytes. The results of this study demonstrated that GSH depletion, by 1-chloro- 2,4-dinitrobenzene (CDNB), had no effect on hemoglobin oxidation in response to hydrogen peroxide (H2O2) generating systems (phenazine methosulfate and menadione bisulfite) in either normal or G6PD- deficient cells. Furthermore, a fourfold to sixfold increase in intracellular GSH concentration also did not protect against H2O2- generating systems in the normal or G6PD-deficient erythrocytes. Conversely, introduction of an NADPH-generating system (purified G6PD) into G6PD-deficient cells resulted in a significant decrease in oxidant sensitivity and an ability to cycle GSH. Further experiments demonstrated that the reduced oxidant sensitivity of the G6PD- reconstituted erythrocytes was not due to the maintenance of GSH levels because CDNB-mediated depletion of GSH did not alter this protective effect. Analysis of these results demonstrated a direct correlation between NADPH, but not GSH, concentration and hemoglobin oxidant sensitivity.
Several proteins are attached to the cell membrane by a glycosyl- phosphatidylinositol (GPI) anchor. In this report, we show that during vesiculation of human RBCs in vitro, two of these proteins, acetylcholinesterase and decay accelerating factor, redistribute on the cell surface and become enriched in the released vesicles. As a result, the remnant cells are depleted of these proteins. We suggest that alterations in the architecture of the RBC membrane that precede vesiculation lead to selective polarization of GPI-anchored proteins within the domain of the membrane destined to become a vesicle. Since vesiculation occurs in many cell types, and if the loss of GPI-anchored proteins accompanies this process, it may have important biologic significance.
Several proteins are attached to the cell membrane by a glycosyl- phosphatidylinositol (GPI) anchor. In this report, we show that during vesiculation of human RBCs in vitro, two of these proteins, acetylcholinesterase and decay accelerating factor, redistribute on the cell surface and become enriched in the released vesicles. As a result, the remnant cells are depleted of these proteins. We suggest that alterations in the architecture of the RBC membrane that precede vesiculation lead to selective polarization of GPI-anchored proteins within the domain of the membrane destined to become a vesicle. Since vesiculation occurs in many cell types, and if the loss of GPI-anchored proteins accompanies this process, it may have important biologic significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.