A well-dispersed PtCu alloy nanoparticles (NPs) on three-dimensional nitrogen-doped graphene (PtCu/3D N-G) electrocatalyst has been successfully synthesized by a conventional hydrothermal method combined with a high-efficiency microwave-assisted polyol process. The morphology, composition, and structures are well-characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammograms illustrate that the as-prepared PtCu/3D N-G electrocatalyst possesses the larger electrochemical active surface area, lower onset potential, higher current density, and better tolerance to CO poisoning than PtCu NPs on reduced graphene oxide and XC-72 carbon black in acid solution. In addition, long-time chronoamperometry reveals that the PtCu/3D N-G catalyst exhibits excellent stability even longer than 60 min toward acid methanol electrooxidation. The remarkably enhanced performance is related to the combined effects of uniformly interconnected three-dimensional porous graphene networks, nitrogen doping, modified Pt alloy NPs, and strong binding force between Pt alloy NPs and 3D N-G structures.
The high-performance Ni@PbPt electrocatalyst supported on graphene has been synthesized by a galvanic displacement reaction. The method is simple and can be carried out at room temperature without using any capping agents. Transmission electron microscopy reveals that the Ni@PbPt is well distributed with no obvious aggregation. Cyclic voltammetry and chronoamperometry results indicate that the material has higher electrochemical active surface area, electrocatalytic activity, more negative onset oxidative potential and stability for the electro-oxidation of ethanol compared to PtRu and the Ni@PbPt electrocatalyst supported on XC-72 carbon black.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.