The self-asembly of block copolymers is a promising platform for the "bottom-up" fabrication of nanostructured materials and devices. This review covers some of the advances made in this field from the laboratory setting to applications where block copolymers are in use.
Interfacial interactions underpin phenomena ranging from adhesion to surface wetting. Here, we describe a simple, rapid, and robust approach to modifying solid surfaces, based on an ultrathin cross-linkable film of a random copolymer, which does not rely on specific surface chemistries. Specifically, thin films of benzocyclobutene-functionalized random copolymers of styrene and methyl methacrylate were spin coated or transferred, then thermally cross-linked on a wide variety of metal, metal oxide, semiconductor, and polymeric surfaces, producing a coating with a controlled thickness and well-defined surface energy. The process described can be easily implemented and adapted to other systems.
The microdomain orientation in thin films of cylinder-and lamella-forming diblock copolymers, polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA), was investigated as a function of the film thickness and the composition of random copolymers composed of styrene (S) and methyl methacrylate (MMA), denoted as P(S-r-MMA), that were anchored to the substrate. Using scanning force microscopy (SFM) and grazing incidence small-angle X-ray scattering (GISAXS), the dependence of the microdomain orientation on film thickness around lattice period (or d-spacing, L 0 ), where the microdomain orientations normal to the film surface could be achieved, showed that the optimal condition for the balanced interfacial interactions (the so-called neutrality in random copolymer) was 0.64 of PS mole fraction (X PS ) for the cylindrical microdomain having narrow compositional range of P(S-r-MMA) from 0.52 to 0.72 of X PS , whereas for the lamella microdomain it was observed at X PS ) 0.55 ranging extensively from 0.48 to 0.78.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.