The aryl hydrocarbon receptor (AHR) is a nuclear receptor that modulates the response to environmental stimuli. It was recognized historically for its role in toxicology but, in recent decades, it has been increasingly recognized as an important modulator of disease—especially for its role in modulating immune and inflammatory responses. AHR has been implicated in many diseases that are driven by immune/inflammatory processes, including major depressive disorder, multiple sclerosis, rheumatoid arthritis, asthma, and allergic responses, among others. The mechanisms by which AHR has been suggested to impact immune/inflammatory diseases include targeted gene expression and altered immune differentiation. It has been suggested that single nucleotide polymorphisms (SNPs) that are near AHR-regulated genes may contribute to AHR-dependent disease mechanisms/pathways. Further, we have found that SNPs that are outside of nuclear receptor binding sites (i.e., outside of AHR response elements (AHREs)) may contribute to AHR-dependent gene regulation in a SNP- and ligand-dependent manner. This review will discuss the evidence and mechanisms of AHR contributions to immune/inflammatory diseases and will consider the possibility that SNPs that are outside of AHR binding sites might contribute to AHR ligand-dependent inter-individual variation in disease pathophysiology and response to pharmacotherapeutics.
Millions of patients suffer from Major Depressive Disorder (MDD), but many do not respond to selective serotonin reuptake inhibitor (SSRI) therapy. We used a pharmacometabolomics-informed pharmacogenomics research strategy to identify genes associated with metabolites that were related to SSRI response. Specifically, 306 MDD patients were treated with citalopram or escitalopram and blood was drawn at baseline, four and eight weeks for blood drug levels, genome-wide single nucleotide polymorphism (SNP) genotyping and metabolomic analyses. SSRI treatment decreased plasma serotonin concentrations (p<0.0001). Baseline and plasma serotonin concentration changes were associated with clinical outcomes (p<0.05). Therefore, baseline and serotonin concentration changes were used as phenotypes for genome wide association studies (GWAS). GWAS for baseline plasma serotonin concentrations revealed a genome-wide significant (p=7.84E-09) SNP clusters on chromosome four 5’ of TSPAN5 and a cluster across ERICH3 on chromosome one (p=9.28E-08) that were also observed during GWAS for change in serotonin at four (p=5.6E-08 and p=7.54E-07, respectively) and eight weeks (p=1.25E-06 and p=3.99E-07, respectively). The SNPs on chromosome four were eQTLs for TSPAN5. Knockdown (KD) and over expression (OE) of TSPAN5 in a neuroblastoma cell line significantly altered expression of serotonin pathway genes (TPH1, TPH2, DDC and MAOA). Chromosome one SNPs included two ERICH3 nonsynonymous SNPs that resulted in accelerated proteasome-mediated degradation. In addition, ERICH3 and TSPAN5 KD and OE altered media serotonin concentrations. Application of a pharmacometabolomics-informed pharmacogenomic research strategy, followed by functional validation, indicated that TSPAN5 and ERICH3 are associated with plasma serotonin concentrations and may play a role in SSRI treatment outcomes.
Major depressive disorder (MDD) is a heterogeneous disease. Efforts to identify biomarkers for sub-classifying MDD and antidepressant therapy by genome-wide association studies (GWAS) alone have generally yielded disappointing results. We applied a metabolomics-informed genomic research strategy to study the contribution of genetic variation to MDD pathophysiology by assaying 31 metabolites, including compounds from the tryptophan, tyrosine, and purine pathways, in plasma samples from 290 MDD patients. Associations of metabolite concentrations with depressive symptoms were determined, followed by GWAS for selected metabolites and functional validation studies of the genes identified. Kynurenine (KYN), the baseline plasma metabolite that was most highly associated with depressive symptoms, was negatively correlated with severity of those symptoms. GWAS for baseline plasma KYN concentrations identified SNPs across the beta-defensin 1 (DEFB1) and aryl hydrocarbon receptor (AHR) genes that were cis-expression quantitative trait loci (eQTLs) for DEFB1 and AHR mRNA expression, respectively. Furthermore, the DEFB1 locus was associated with severity of MDD symptoms in a larger cohort of 803 MDD patients. Functional studies demonstrated that DEFB1 could neutralize lipopolysaccharide-stimulated expression of KYN-biosynthesizing enzymes in monocytic cells, resulting in altered KYN concentrations in the culture media. In addition, we demonstrated that AHR was involved in regulating the expression of enzymes in the KYN pathway and altered KYN biosynthesis in cell lines of hepatocyte and astrocyte origin. In conclusion, these studies identified SNPs that were cis-eQTLs for DEFB1 and AHR and, which were associated with variation in plasma KYN concentrations that were related to severity of MDD symptoms.
The testis‐specific Y‐encoded‐like protein (TSPYL) gene family includes TSPYL1 to TSPYL6. We previously reported that TSPYL5 regulates cytochrome P450 (CYP) 19A1 expression. Here we show that TSPYLs, especially TSPYL 1, 2, and 4, can regulate the expression of many CYP genes, including CYP17A1, a key enzyme in androgen biosynthesis, and CYP3A4, an enzyme that catalyzes the metabolism of abiraterone, a CYP17 inhibitor. Furthermore, a common TSPYL1 single nucleotide polymorphism (SNP), rs3828743 (G/A) (Pro62Ser), abolishes TSPYL1's ability to suppress CYP3A4 expression, resulting in reduced abiraterone concentrations and increased cell proliferation. Data from a prospective clinical trial of 87 metastatic castration‐resistant prostate cancer patients treated with abiraterone acetate/prednisone showed that the variant SNP genotype (A) was significantly associated with worse response and progression‐free survival. In summary, TSPYL genes are novel CYP gene transcription regulators, and genetic alteration within these genes significantly influences response to drug therapy through transcriptional regulation of CYP450 genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.