The expansion property of an infrared CO2 laser produced air plasma is characterized using a high-speed imaging shadowgraph technique. The shadowgraphs were taken by a time-gated intensified charge-coupled device at various delay times after single pulses induced gas breakdown. We examined five incident laser energy of 180, 240, 345, 420 and 600 mJ induced air breakdown at the pressure of atmospheric and 104 Pa. A shock wave produced by laser induced breakdown was also observed and its speed was measured as a function delay time between the breakdown and the shadow imaging under different air pressure. The experimental results indicated that the radial and axial shock wave front evolutions showed similar behavior, which increased fast with delay time at early stage and slowly at later stage. The propagation speed of the wavefront was about 2 cm/μs at the initial stage of breakdown, and then decreased very quickly. The propagation speed under low air pressure was higher than that of gases under high pressure and the spark sustained less time at lower pressure. The size of laser induced air spark increased with incident laser energy but not simple linear relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.