Amomum villosum Lour., produced from Yangchun, Guangdong Province, China, is a Daodi medicinal material of Amomi Fructus in traditional Chinese medicine. This herb germplasm should be accurately identified and collected to ensure its quality and safety in medication. In the present study, single nucleotide polymorphism typing method was evaluated on the basis of DNA barcoding markers to identify the germplasm of Amomi Fructus. Genomic DNA was extracted from the leaves of 29 landraces representing three Amomum species (A. villosum Lour., A. xanthioides Wall. ex Baker and A. longiligulare T. L. Wu) by using the CTAB method. Six barcoding markers (ITS, ITS2, LSU D1–D3, matK, rbcL and trnH-psbA) were PCR amplified and sequenced; SNP typing and phylogenetic analysis were performed to differentiate the landraces. Results showed that high-quality bidirectional sequences were acquired for five candidate regions (ITS, ITS2, LSU D1–D3, matK, and rbcL) except trnH-psbA. Three ribosomal regions, namely, ITS, ITS2, and LSU D1–D3, contained more SNP genotypes (STs) than the plastid genes rbcL and matK. In the 29 specimens, 19 STs were detected from the combination of four regions (ITS, LSU D1–D3, rbcL, and matK). Phylogenetic analysis results further revealed two clades. Minimum-spanning tree demonstrated the existence of two main groups: group I was consisting of 9 STs (ST1–8 and ST11) of A. villosum Lour., and group II was composed of 3 STs (ST16–18) of A. longiligulare T.L. Wu. Our results suggested that ITS and LSU D1–D3 should be incorporated with the core barcodes rbcL and matK. The four combined regions could be used as a multiregional DNA barcode to precisely differentiate the Amomi Fructus landraces in different producing areas.
In the present study, we depicted the complete mitochondrial genome of a valuable medicinal plant, Vitex rotundifolia. The mitochondrial genome of V. rotundifolia, mapped as a circular molecule, spanned 380,980 bp in length and had a GC content of 45.54%. The complete genome contained 38 protein-coding genes, 19 transfer RNAs (tRNAs), and 3 ribosomal RNAs (rRNAs). We found that there were only 38.73% (147.54 kb), 36.28% (138.23 kb), and 52.22% (198.96 kb) of the homologous sequences in the mitochondrial genome of V. rotundifolia, as compared with the mitochondrial genomes of Scutellaria tsinyunensis, Boea hygrometrica, and Erythranthe lutea, respectively. A multipartite structure mediated by the homologous recombinations of the three direct repeats was found in the V. rotundifolia mitochondrial genome. The phylogenetic tree was built based on 10 species of Lamiales, using the maximum likelihood method. Moreover, this phylogenetic analysis is the first to present the evolutionary relationship of V. rotundifolia with the other species in Lamiales, based on the complete mitochondrial genome.
Curcumae Longae Rhizoma (Curcuma longa L.) is an important traditional Chinese medicine with multiple beneficial effects. To elucidate the genetic and chemical differences among Curcumae Longae Rhizoma samples, three DNA barcoding markers (rbcL, matK, and ITS-LSU D1/D3) and HPLC fingerprinting were employed in this study. The discriminatory power of rbcL and matK was low, as they only detected one sequence type that showed 100% similarity with more than 20 congeneric species in the Barcode of Life Data Systems (BOLD) database. In contrast, ITS-LSU D1/D3 showed sufficient discriminatory power to precisely identify all of the market samples as C. longa L. in a BLAST search as well as differentiate each sample based on 2-10 ITS-LSU D1/D3 haplotypes with intragenomic variability (mean p-distance: 0.7%, range: 0-2.6%; mean number of differences: 9.6 sites, range: 0-38 sites). HPLC fingerprinting of 13 commercial samples showed a similarity that ranged from 0.769 to 0.996, indicating that the sample quality varied. A cluster analysis based on 5 common peak areas from the HPLC chromatogram resulted in two groups. Group I included 9 samples with a relatively high chemical content, and group II contained 4 samples with a low chemical content. A Mantel test revealed a low correlation (r 0.1721, p 0.047) between genetic and chemical differences. Our findings suggest that the integrated approach of ITS-LSU D1/D3 DNA barcoding and HPLC fingerprinting provides a comprehensive, precise, and convenient method to clarify the genetic and chemical differences in Curcumae Longae Rhizoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.