Members of the Wnt family of secreted molecules have been established as key factors in determining cell fate and morphogenic signaling. It has long been recognized that Wnt induces morphogenic signaling through the Tcf/LEF-1 cascade by regulating free intracellular levels of -catenin, a co-factor for Tcf/LEF-1 transcription factors. In the present study, we have demonstrated that Wnt-3A can also directly induce transcription from the LEF-1 promoter. This induction was dependent on glycogen synthase kinase 3 inactivation, a rise in free intracellular -catenin, and a short 110-bp Wnt-responsive element (WRE) in the LEF-1 promoter. Linear and internal deletion of this WRE led to a dramatic increase in constitutive LEF-1 promoter activity and loss of Wnt-3A responsiveness. In isolation, the 110-bp WRE conferred context-independent Wnt-3A or -catenin(S37A) responsiveness to a heterologous SV40 promoter. Studies expressing dominant active and negative forms of LEF-1, -catenin, GSK-3, and -catenin/ LEF-1 fusions suggest that Wnt-3A activates the LEF-1 promoter through a -catenin-dependent and LEF-1-independent process. Wnt-3A expression also induced multiple changes in the binding of factors to the WRE and suggests that regulatory mechanisms may involve modulation of a multiprotein complex. In summary, these results provide evidence for transcriptional regulation of the LEF-1 promoter by Wnt and enhance the mechanistic understanding of Wnt/-catenin signaling in the regulation of LEF-1-dependent developmental processes.
Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and=or Rac1), ROS processing enzymes (SOD1 and=or peroxiredoxins), chloride channels capable of mediating superoxide transport and=or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia=reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redoxdependent effector functions through the spatial and temporal regulation of ROS as second messengers. Antioxid. Redox Signal. 11, 1313-1333
Regulated expression of lymphoid enhancer factor 1 (Lef-1) plays an obligatory role in the transcriptional control of epithelial bud formation during airway submucosal gland and mammary gland development. However, regions of the Lef-1 promoter required for spatial and temporal regulation during glandular development have yet to be defined. We hypothesized that a previously reported 110-bp Wnt-responsive element (WRE) in the Lef-1 promoter, which can be induced by Wnt-3a/beta-catenin signals, may also play a role in regulating Lef-1 expression during airway and mammary gland development. Here we show that the Lef-1 promoter is also responsive to Wnt-1 signals in both airway and mammary epithelial cell lines. To better understand the importance of the WRE in dynamically regulating Lef-1 promoter activation in these two types of epithelia in vivo, we utilized LacZ reporter transgenic mice to evaluate the significance of Wnt-responsive sequences in the Lef-1 promoter during glandular bud formation. A 2.5-kb Lef-1 promoter fragment partially reproduced endogenous Lef-1 expression patterns in a subset of cell types involved in both mammary gland and submucosal glandular bud development. Interestingly, removal of the 110-bp WRE from the Lef-1 promoter ablated expression in nasal and tracheal submucosal glandular buds while having no significant effect on developmental expression in mammary glandular buds. These findings suggest that Wnt regulation of the Lef-1 promoter at the WRE may play an important role during airway submucosal glandular bud formation.
Engelhardt JF. Hepatocytes produce TNF-␣ following hypoxia-reoxygenation and liver ischemia-reperfusion in a NADPH oxidase-and c-Src-dependent manner.
Lymphoid Enhancer Factor 1 (Lef-1) is an important developmental transcription factor required for the inductive formation of several epithelial-derived organs including hair follicles. Inductive expression of Lef-1 mRNA is tightly regulated during embryo development, suggesting the involvement of a highly regulated promoter. In vitro analysis of the Lef-1 gene has demonstrated the existence of at least two spatially distinct promoters with multiple transcriptional start sites that are responsive to the canonical Wnt/beta-catenin pathway. Regions of the Lef-1 promoter required for inductive regulation in vivo, however, have yet to be determined. To this end, we utilized LacZ-reporter transgenic mice to define segments of the human Lef-1 promoter capable of reproducing mesenchymal- or epithelial-restricted transcriptional patterns of Lef-1 expression during hair and vibrissa follicle development. These studies have revealed that a 110 bp Wnt/beta-catenin-responsive element, contained within a minimal 2.5 kb Lef-1 promoter, plays an important role in regulating mesenchymal, and potentially epithelial, expression during follicle development in mouse embryos. This 2.5 kb Lef-1 promoter also demonstrated inductive mesenchymal expression during postnatal anagen stage hair-follicle cycling. Additionally, analysis of Lef-1 promoter expression revealed previously uncharacterized regions of endogenous Lef-1 expression seen in the sebaceous glands of vibrissa and hair follicles in transgenic lines harboring the minimal Lef-1 promoter and additional intronic sequences. In summary, these studies have begun to dissect the transcriptional diversity of the human Lef-1 promoter during the hair/vibrissa follicle and sebaceous gland formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.