Metastable ion decay in matrix-assisted laser desorption/ionization (MALDI) has become a routine method for obtaining primary structures of peptides. Significant fragmentation occurs in the MALDI ion source and can be observed via delayed ion extraction TOF-MS. In-source decay (ISD) can provide C- and N-terminal primary sequence data for even moderate-sized peptides (< 5000 Da). The unique cn series fragmentation that occurs in ISD has been exploited to obtain partial C-terminal sequences for proteins as large as human apotransferrin (75 kDa). Two approaches for combining this ISD MALDI-generated partial sequence information with protein database searching techniques are presented. In one approach, cyanogen bromide is used to cleave relatively large peptide fragments from a sample of human apotransferrin. One of the larger cleavage products (6034.84 Da) was isolated by HPLC and subjected to ISD MALDI analysis. An easily identified cn fragment ion series allowed two noncontiguous segments of the peptide's sequence to be determined (about 55% of the total sequence). This partial sequence information was used to search protein and oligonucleotide sequence databases. In addition to uniquely identifying human apotransferrin in a protein sequence database, an example of the use of this ISD MALDI-determined partial sequence information to search expressed sequence tag databases is presented. Such searches have the potential for rapidly identifying new genes that code for target proteins. An alternate approach for obtaining partial sequence information on proteins is also demonstrated that utilizes ISD MALDI fragmentation of the intact protein to generate partial sequence information. This approach is shown to generate about 5-7% of a protein's sequence, usually near the C-terminus of the protein. Examples of the ISD MALDI fragmentation data obtained from intact (reduced) human apotransferrin and intact (nonreduced) bovine serum albumin (66 kDa) proteins are presented.
The results of a study to determine the utility of in-source decay fragmentation of matrix-assisted laser-desorbed ions for obtaining useful sequence information on unknown peptides are presented. Six peptides were purified by high-performance liquid chromatography and submitted as single blind unknowns. The in-source decay fragment ion data were collected on a linear time-of-flight mass spectrometer equipped with delayed extraction. These fragment ion data were manually interpreted on the basis of known fragmentation pathways to determine a proposed sequence. The proposed sequences for three of the unknowns were essentially correct, with a few minor errors. A fourth unknown had significant errors associated with its proposed sequence due to misinterpretation of the fragmentation data. Two unknowns were found to have undergone significant sample degradation prior to analysis, which compromised the results for these samples. An example of the use of protein database searching of a partial peptide sequence to aid in a sequence determination is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.