Myoelectric prostheses have many advantages over body-powered prostheses, yet the absence of sensory feedback in myoelectric devices is one reason body-powered devices are often preferred by amputees. While considerable progress has been made in the mechanical design and control of myoelectric prostheses, research on haptic feedback has not had a similar impact. In this study, we seek to develop a fundamental understanding of the utility of force feedback and vision in the functional operation of a body-powered upper-limb prosthesis. Using a custom body-powered prosthesis in which force feedback can be conditionally removed, we asked N=10 non-amputee participants to identify objects based on stiffness in four separate conditions with and without visual and/or force feedback. Results indicate that the combination of visual and force feedback allows for the best accuracy, followed by force feedback only, then visual feedback only. In addition, combining force feedback with visual feedback does not significantly affect identification timing compared to visual feedback alone. These findings suggest that consideration should be given to the development of force feedback displays for myoelectric prostheses that function like a Bowden cable, coupling the amputee's control input to the resulting feedback.
An important goal of haptic display is to make available the action/reaction relationships that define interactions between the body and the physical world. While in physical world interactions reaction cues invariably impinge on the same part of the body involved in action (reaction and action are colocated), a haptic interface is quite capable of rendering feedback to a separate body part than that used for producing exploratory actions (non-colocated action and reaction). This most commonly occurs with the use of vibrotactile display, in which a cutaneous cue has been substituted for a kinesthetic cue (a kind of sensory substitution). In this paper, we investigate whether non-colocated force and displacement cues degrade the perception of compliance. Using a custom non-colocated kinesthetic display in which one hand controls displacement and the other senses force, we ask participants to discriminate between two virtual springs with matched terminal force and adjustable non-linearity. An additional condition includes one hand controlling displacement while the other senses force encoded in a vibrotactile cue. Results show that when the terminal force cue is unavailable, and even when sensory substitution is not involved, non-colocated kinesthetic displays degrade compliance discrimination relative to colocated kinesthetic displays. Compliance discrimination is also degraded with vibrotactile display of force. These findings suggest that non-colocated kinesthetic displays and, likewise, cutaneous sensory substitution displays should be avoided when discrimination of compliance is necessary for task success.
Haptic display is a promising means to deliver sensory feedback to an amputee from an upper limb prosthesis equipped with electronic sensors. Haptics, however, describes a diverse set of sensory and perceptual modalities. The question arises: which modality might best serve the purposes of the prosthesis wearer, and which body site should be used? To begin to answer these questions, we have conducted an experiment involving n=14 participants in which reaction force was displayed either to the same hand used to explore a virtual object (co-located condition), or to the opposing hand (non co-located condition). In randomly ordered trials, reaction forces were derived from the commanded motion according to one of three force-displacement relationships, describing a linear spring, a softening spring, and a stiffening spring. All springs shared a common rest length and terminal force. Results indicate a significant difference between the co-located and non co-located force display conditions in terms of identification accuracy and time length. Our findings suggest that those haptic modalities that are capable of coupling action and re-action will provide the most utility to amputees with an upper limb prosthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.