The objective of this paper is to identify the extent to which real world data (RWD) is being utilized, or could be utilized, at scale in drug development. Through screening peer-reviewed literature, we have cited specific examples where RWD can be used for biomarker discovery or validation, gaining a new understanding of a disease or disease associations, discovering new markers for patient stratification and targeted therapies, new markers for identifying persons with a disease, and pharmacovigilance. None of the papers meeting our criteria was specifically geared toward new novel targets or indications in the biopharmaceutical sector; the majority were focused on the area of public health, often sponsored by universities, insurance providers or in combination with public health bodies such as national insurers. The field is still in an early phase of practical application, and is being harnessed broadly where it serves the most direct need in public health applications in early, rare and novel disease incidents. However, these exemplars provide a valuable contribution to insights on the use of RWD to create novel, faster and less invasive approaches to advance disease understanding and biomarker discovery. We believe that pharma needs to invest in making better use of EHRs and the need for more precompetitive collaboration to grow the scale of this 'big denominator' capability, especially given the needs of precision medicine research.
With the increasing use of new regulatory tools, like the Food and Drug Administration’s breakthrough designation, there are increasing challenges for European health technology assessors (HTAs) to make an accurate assessment of the long-term value and performance of chimeric antigen receptor T-cell (CAR-T) therapies, particularly for orphan conditions, such as acute lymphoblastic leukaemia. The aim of this study was to demonstrate a novel methodology harnessing longitudinal real-world data, extracted from the electronic health records of a medical centre functioning as a clinical trial site, to develop an accurate analysis of the performance of CAR-T compared with the next-best treatment option, namely allogeneic haematopoietic cell transplant (HCT). The study population comprised 43 subjects in two cohorts: 29 who had undergone HCT treatment and 14 who had undergone CAR-T therapy. The 3-year relapse-free survival probability was 46% (95% CI: 08% to 79%) in the CAR-T cohort and 68% (95% CI: 46% to 83%) in the HCT cohort. To explain the lower RFS probability in the CAR-T cohort compared with the HCT cohort, the authors hypothesised that the CAR-T cohort had a far higher level of disease burden. This was validated by log-rank test analysis (p=0.0001) and confirmed in conversations with practitioners at the study site. The authors are aware that the small populations in this study will be seen as limiting the generalisability of the findings to some readers. However, in consultation with many European HTAs and regulators, there is broad agreement that this methodology warrants further investigation with a larger study.
After nearly a decade of discussion, analysis, and development, the Medicines Adaptive Pathways to Patients (MAPPs) initiative is beginning to see acceptance from regulators, industry, patients, and payers, with the first live pilot project initiated under the guidance of the European Medicines Agency in 2014. Although it is a significant achievement to see the first asset being placed into human trials under an adaptive pathway, there is much to be learned regarding the multinational and multi-stakeholder effort that has driven the growing acceptance of MAPPs as a methodology and concept, as well as the need for continued and increasing international collaboration to foster the wider adoption of MAPPs. Changes in available science and technology, as well as a number of challenges in the current system, outlined in this paper, are transforming approaches to medicines development and approval. It is these challenges that have led directly to the groundbreaking MAPPs collaboration between the Massachusetts Institute of Technology Center for Biomedical Innovation's New Drug Development Paradigms Initiative, the EMA, patient, payer and health technology assessment groups, the European Federation of Pharmaceutical Industries and Associations, and the Innovative Medicines Initiative-a European public-private partnership. This article examines the development of MAPPs, from inception of the concept, to the establishment of this trans-Atlantic initiative, and examines challenges for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.